
Developing Applications with WireHose (Mac OS X)

Copyright ©2000−2003 Bulldog Beach Interactive, Inc.

Table of Contents

About this document...1

Contents..1

Related documentation...2

About WireHose..3

WireHose features...3

WireHose architecture...5

Core frameworks...5

Additional frameworks..6

Application structure...6

Sample applications...7

NewsDemo..7

Conexiones..8

About Hello World..11

Syndicated content...12

Aggregators..12

Browsing and searching...12

Personalization...13

What WireHose provides...14

WireHose business logic concepts...15

Resources...15

Tags..16

Personalization...16

Fetchers..17

Getting started...19

Before you begin..19

Creating the project..19

Creating the database...20

Setting up OpenBase...21

Setting up FrontBase...22

Developing Applications with WireHose (Mac OS X)

i

Table of Contents

Getting started

Configuring Hello World for the database..24

The adaptor dictionary..24

Database and prototype frameworks...26

Modeling the data...28

Modeling feeds..28

Creating RSSFeed...28

Adding attributes...31

Uniquing items..33

Modeling items..34

Creating RSSItem..34

Adding attributes...35

Uniquing items..36

Relating feeds and items..37

Relating items to feeds..37

Relating feeds to items..38

Generating SQL and Java..39

Generating SQL and Java for feeds..39

Generating SQL and Java for items..42

Using the layout dictionary...43

Editors and renderers...43

Importing feeds...45

Sample feeds list..49

XML mapping model..51

Fetching dictionaries..53

Cleaning snapshots..54

Enabling the importer..55

Enabling logging..61

Running the importer...63

Browsing feeds..63

Developing Applications with WireHose (Mac OS X)

ii

Table of Contents

Crawling feeds...64

Fetching feeds to crawl..65

Crawling feeds...67

Tagging items..75

Running the import..76

Importing in a separate thread...77

Browsing items..82

Customizing how items are shown..82

WireHose layout concepts..84

The application helper...85

The session helper..86

WireHose user interface concepts...88

The layout dictionary...90

Customizing the user interface..91

Making the main page...91

Adding keyword searching..93

Adding the search box...93

Customizing the search prompt...94

Customizing the search box on specific pages..96

Removing the search box from a specific page..99

Adding personalization...101

Add this to my page...101

Building TagDrillerPage..102

Building SignupPage...104

Adding the component..104

Building the UI..105

Writing the code..108

Developing Applications with WireHose (Mac OS X)

iii

Table of Contents

Finishing the user interface..112

Adding a login panel..112

Customizing the main page...113

Adding navigation...114

Further exploration..118

Component channels..118

Qualifier fetchers...118

Streaming resources...119

Revision tracking...119

Access control..120

Tag templates...121

Bookmarkable URLs...121

Special components...123

Caching..123

Multiple affiliates...125

Affiliate−based inheritance...126

Automatic subentity creation..126

Multiple affiliate best practices...128

Developing Applications with WireHose (Mac OS X)

iv

About this document

WireHose Server gives developers the power to create fast, personalizable web applications

that categorize, index and deliver any media type, like video clips, stock quotes or legacy

data. It features a simple, flexible API for adding new personalizable components and

resource types, making it perfect for creating enterprise portals and high−traffic internet sites.

Why read this document

This document teaches you how to build web applications using WireHose by leading you

through the process of developing a personalizable news aggregator. It covers the overall

architecture of a WireHose application, key portions of the WireHose API, and discusses the

use of WireHose tools. It also includes information about advanced WireHose topics.

It is available in two editions, one for developers using Mac OS X, and one for developers

using Windows.

What you should already know

You should be familiar with building and running applications with WebObjects.

Contents

About WireHose

Summarizes core WireHose features and architecture.

About Hello World

Describes the application which will be built during this tutorial.

WireHose business logic concepts

Introduces key WireHose concepts such as tags, resources and channels.

Getting started

Covers setting up a new WireHose project and configuring the database.

Modeling the data

Works through modeling syndicated items and feeds as WireHose resources.

Importing feeds

Covers building an importer which will insert feeds into the database.

Developing Applications with WireHose (Mac OS X) 1

Crawling feeds

Describes the process of building a crawler which will import items from feeds on a

regular basis.

WireHose layout concepts

Describes key WireHose layout components such as pages, wrappers, areas and the

layout dictionary.

Customizing the user interface

Utilizes WireHose layout features to control the application's appearance and

behavior with minimal code.

Adding personalization

Works through allowing users to sign up for a new account and personalizing their

page.

Finishing the user interface

Adding navigation and other niceties to the sample application.

Further exploration

Summarizes several WireHose features which were not covered in this document.

Related documentation

To get an overall feel for the various parts of the WireHose API, see the Developer Overview,

which provides brief descriptions of important WireHose concepts and classes.

The Java API Reference is the authoritative source for information about WireHose concepts

and classes.

See the Properties Reference for details about controlling the runtime behavior of WireHose

applications through command−line parameters.

Database Setup describes how to set up WireHose to work with nearly any database.

For details about regular expressions support in WireHose, see the Quick Start and Pattern

Reference.

About this document

Developing Applications with WireHose (Mac OS X) 2

http://www.wirehose.com/developer/DeveloperOverview.html
http://www.wirehose.com/developer/javadoc/
http://www.wirehose.com/developer/Properties.html
http://www.wirehose.com/developer/DatabaseSetup.html
http://www.wirehose.com/developer/javadoc/com/stevesoft/pat/package-summary.html#quickstart
http://www.wirehose.com/developer/javadoc/com/stevesoft/pat/package-summary.html#reference
http://www.wirehose.com/developer/javadoc/com/stevesoft/pat/package-summary.html#reference

About WireHose

WireHose gives Java developers the power to create fast, personalizable web applications that

categorize, index and deliver any media type, like video clips, stock quotes or legacy data. It

features a simple, flexible API for adding new personalizable components and resource types,

making it perfect for creating enterprise portals in addition to high−traffic internet sites.

WireHose features

Content management

WireHose provides a powerful, flexible foundation for building content management systems.

Managed content as well as legacy data sources can be categorized and searched by metadata

and keyword indexing. Users can easily browse, search and personalize access to any

WireHose resources, regardless of data source or content type. Our advanced design enables

creation of intelligent metadata with behaviors beyond simple organization into categories.

Personalization

WireHose provides everything you need to create high−performance, scalable personalized

applications. Developers can build easy, intuitive, interfaces for users to customize the

content and resources of a site within roles−based limits set by the site administrator. Visitors

access a personal site that's fully customized to their needs, on any kind of output device,

including email, cell phones, pagers or web services.

Developing Applications with WireHose (Mac OS X) 3

Access control

Developers can easily integrate a WireHose application with existing authentication and

authorization systems to control how users are authenticated and what they can view, edit or

delete. WireHose also provides a flexible and powerful system for enforcing roles−based

access control to metadata, channels and content, as well as a very powerful group and

permission templating capability, which is ideal for creating multiple groups and categories

with preassigned permissions, as when creating multiple departments, workgroups or

classrooms within an organization.

Dynamic layouts

WireHose deployments can support multiple branded affiliates, as in an application service

provider environment, or to allow the user to personalize the look of their page in addition to

personalizing its content. The user interface abstraction layer lets developers support multiple

output formats, such as XML, HDML, SMIL, RSS, RDF, etc., without duplicating important

business logic.

Rapid development

The WireHose frameworks allow developers to build content management and portal

applications faster, through the use of templates for rapidly building new applications and

reusable components, and a next−generation content management portal API. WireHose

provides a consistent interface for managing metadata regardless of back−end data source,

allowing developers to focus on relevant business logic rather than implementation details.

About WireHose

Developing Applications with WireHose (Mac OS X) 4

Database independence

Databases can be switched during development or deployment without rewriting code. Any

database row can become an object which can be categorized and fetched by tags and

keywords. Any foreign JDBC, LDAP, JNDI source can be custom queried, and take

advantage of finely tunable caching to ensure common requests are not fetched more often

than necessary.

WireHose architecture

WireHose is distributed as a collection of compiled frameworks, documentation and sample

code. A WireHose application links to the WireHose frameworks, and adds business logic,

web component definitions, application and session−level logic, and configuration files.

WireHose applications can also be command−line tools or provide web services via SOAP or

XML−RPC.

Core frameworks

These are the basic WireHose frameworks:

WireHoseBase

Contains basic enterprise object interfaces and classes used by all WireHose projects,

as well as utility classes used internally by WireHose.

WireHoseLayoutSupport

Contains core web application layout classes, including application and session−level

logic. Also provides reusable components, page−level components and direct action

interfaces for WireHose pages.

WireHoseEngageSupport

An optional framework which provides roles−based access control to taggable objects

and a templating system for creating hierarchical collections of tags.

About WireHose

Developing Applications with WireHose (Mac OS X) 5

Additional frameworks

WireHose also provides some optional frameworks:

WHOpenBasePrototypes

Contains enterprise object attribute prototype definitions for OpenBase.

WHFrontBasePrototypes

Contains enterprise object attribute prototype definitions for FrontBase.

WireHoseWOBuilderBindings

A fake framework and associated Project Builder project which helps WebObjects

Builder properly display the custom bindings available in WireHose components.

Application structure

While you can build simple WireHose applications in a single project −− and that is the

approach taken in this tutorial −− to achieve maximum code reuse, you'll probably want to

structure your application as a collection of frameworks. This approach allows you to build

multiple applications which share common code without duplication.

Here's an example of an extremely factored approach:

User frameworks

Contain custom user classes and any objects which manage collections of channels

for users.

Tag frameworks

Contain custom tag classes. For example, you may have one framework for workflow

tags, and another for tags which model versioning or special access control

requirements. Since WireHose provides a unified API for dealing with all types of

tags, each collection of tag types can be considered a single extension to an

application. These frameworks may include default user interface component

definitions, which could be overridden in other frameworks or the application itself.

Channel frameworks

Contain custom channel types. For example, opinion polls, Amazon searches, legacy

calendar access, etc. These frameworks may include default user interface component

definitions, which could be overridden in other frameworks or the application itself.

About WireHose

Developing Applications with WireHose (Mac OS X) 6

Resource frameworks

Contain custom taggable and indexable objects. For example, bookmarks, pictures,

email messages, contacts, movies, news stories, Word documents, spreadsheets −− or

any other type of enterprise object. These frameworks may include default user

interface component definitions, which could be overridden in other frameworks or

the application itself.

Layout frameworks

Contain web components and images which make up various layouts, or skins, for a

web application. For example, in addition to having "plain" or "fancy" layouts, you

can also define layouts for various XML formats, or even PDF or Flash.

Sample applications

There are a lot of features in WireHose that the Hello World application won't cover.

WireHose comes with several other example applications which demonstrate various features.

NewsDemo

NewsDemo is a personalizable news aggregator which combines articles from multiple

categories into topics. It provides users the ability to personalize access to news and traffic

cams, as well as letting them choose from several possible layouts. NewsDemo was designed

to handle the high−traffic personalization needs of television station and newspaper news

portals.

NewsDemo also includes an administration interface which allows editors to create

collections of pre−built topics for users to choose from.

About WireHose

Developing Applications with WireHose (Mac OS X) 7

Conexiones

Conexiones gives educators the power to open a world of interactive communication,

exchanging resources and ideas between students, parents and teachers.

Students learn better when they're engaged with interactive, compelling content that is easy to

navigate, and personalized to their learning level and special interests.

Teachers post assignments and classroom resources. Students browse resources, post

homework and participate in classroom research. Parents monitor the student/teacher

relationship and participate directly in the learning process. Group participation enriches the

learning experience for all involved.

Conexiones involves students in an interactive learning community, where they communicate

with other students, teachers and parents to help create their own curriculum, based on their

specific academic interests, strengths and weaknesses.

About WireHose

Developing Applications with WireHose (Mac OS X) 8

Manage any type of content

Educators, parents and students can enhance learning through interactive displays of

animation, video and audio. Word processing, spreadsheets and presentations are also easily

incorporated.

Full indexing and categorization

Users can easily track down relevant content in any format by keywords and categories,

rapidly connecting them with the resources they're looking for.

Personalization

Users can upload their own content into personal categories such as "My Bookmarks" or "My

Pictures", and easily share it with other classroom members or the general public. Everyone

has quick access to their own content, classrooms and groups.

About WireHose

Developing Applications with WireHose (Mac OS X) 9

Parental access

Parents can easily see how their students are doing, and exchange private feedback with

teachers, involving them directly in fulfilling their specific educational needs.

Access control

Access to classrooms, groups and content can be controlled as required, respecting the

privacy and special needs of students and staff. Administrators can easily create classrooms

with partitioned private and public content, categories and groups.

Flexible classroom and group templates

Teachers can organize the content for their classrooms the way they see fit, and

administrators can provide useful defaults. Administrators can define default categories,

groups and permissions when creating new classrooms, groups and users. Templates can

define any number of sub−categories and groups, and can be easily fine−tuned for individual

needs.

Easy to use

Conexiones features an uncluttered interface, simple enough for children and parents to use,

yet unleashes the full power of a real content management portal for teachers and

administrators.

About WireHose

Developing Applications with WireHose (Mac OS X) 10

About Hello World

This document will teach you the fundamentals of building WireHose applications by

walking you step by step through the process of putting a sample application together. As is

traditional, this application will be called "Hello World".

However, since the WireHose frameworks provide significant functionality out of the box,

this Hello World application will do much more than simply echo some text to the screen.

Hello World will provide personalized access to thousands of syndicated headlines, photos,

musings and other content, from hundreds of websites across the internet. In other words,

you'll build a world−class personalizable aggregator of syndicated content.

Developing Applications with WireHose (Mac OS X) 11

Syndicated content

Thousands of websites now distribute their content through more than just a web browser.

These sites make summaries of their new content available in XML files. The most common

format for these files is known as "RSS", introduced by Netscape and popularized by

Userland Software. The RSS file for a website is referred to as a "feed".

There is no consensus on what RSS stands for −− some call it "Rich Site Summary", while

others call it "Really Simple Syndication". No matter how you refer to it, though, it is a

powerful, yet simple, way to gather and distribute information.

There are several types of RSS files; for this tutorial, we'll be focusing on the simplest format,

known as RSS 2.0. A specification for the RSS 2.0 format can be found here.

Aggregators

An aggregator is an application which collects content from diverse sources and presents it in

an organized fashion. There are two common types of aggregators, those which run on a

desktop and provide content to a single user, and those which run on a server and provide

content to multiple users.

Hello World will be a server−based application which provides personalized access to the

content distributed in RSS feeds to multiple users.

Browsing and searching

The most common user interface for presenting aggregated content is to let users browse

through the individual feeds, perhaps arranged into categories. Hello World will use this

interface, with the added ability to browse through the individual items contained within the

feeds.

A good aggregator should also allow the user to search the available feeds and items by

keywords; since this capability is built into WireHose, Hello World will also provide this

function.

About Hello World

Developing Applications with WireHose (Mac OS X) 12

http://backend.userland.com/rss

Personalization

Since an aggregator may collect items from hundreds or thousands of feeds, it's important to

let users select the subset of the available content they're interested in. Otherwise, attempting

to keep up with all that information would be like drinking from a firehose!

The way personalization is handled in most aggregators is to let users select a collection of

feeds they're interested in. The items in these feeds are then presented to the user as a

collection of boxes on a page, one per feed, each with a list of the items currently in the feed.

Hello World will go one better than that. Since users will be able to browse through the

individual items in the feeds, they'll also be able to personalize access to collections of items,

no matter which feed they originated from. In addition, users will be able to easily turn the

results of any keyword search into a personalized topic on their page.

About Hello World

Developing Applications with WireHose (Mac OS X) 13

What WireHose provides

WireHose provides much of Hello World's functionality out of the box. Content

categorization, browsing, searching and personalization are all handled by the WireHose

frameworks.

You'll model the database attributes of feeds and items, and provide users the ability to sign

up for a new account. You'll also write the feed crawler, which will fetch the individual feeds

and import new items into the database. And, of course, you'll have full control over the

application's look and feel.

About Hello World

Developing Applications with WireHose (Mac OS X) 14

WireHose business logic concepts

Nearly all WebObjects applications revolve around fetching, inserting and modifying data in

a database. The enterprise objects frameworks within WebObjects make this possible in a

database−independent fashion, allowing you to focus on the business logic within your

application rather than the details of a relational database.

Often you will want to be able to organize enterprise objects into categories which users can

browse, or search via keywords. This is common in many kinds of applications, including

content management, portal, workflow, knowledge management and publishing applications.

WireHose was developed specifically to solve these types of problems.

However, once you get a good feeling for what WireHose can do for you, you'll recognize

many other scenarios where WireHose can save development time and help create a richer

user experience. WireHose provides a powerful toolset which you can use to unify widely

varying data such as customer information, email messages or catalog items, in a consistent

interface.

Resources

WireHose extends WebObjects so you can create enterprise objects which can be tagged with

categories and searched by keywords. Objects are defined as "taggable" and/or "indexable".

By convention, objects which are both taggable and indexable are referred to as "resources".

The taggable and indexable capabilities are defined as Java interfaces, called WHTaggable

and WHIndexable, respectively. WireHose uses this approach so they can be added to any

enterprise object class −− even ones you've already modeled and implemented −− by adding a

few relationships and implementing these interfaces.

WireHose provides an assortment of objects and methods which fetch and manage objects

which implement a particular interface, rather than those of a specific entity, so any code

written to work with one type of taggable object will work with all taggable objects.

Developing Applications with WireHose (Mac OS X) 15

Tags

Tags are enterprise objects which can be arranged in an arbitrary hierarchy and assigned to

taggable objects. A taggable object can have any number of tags. Tags can be arranged into

any hierarchy required. Each tag has a parent tag, and most tags have child tags. (A top tag is

its own parent.) WireHose provides methods for retrieving a tag's ancestors, relative

ancestors, descendents, relative descendents and leaf descendents.

A tag can be uniquely identified by its tagpath, which is a slash−delimited string indicating its

position in the hierarchy. For example, the tagpath "Cats/Black Cats/Budu" identifies the tag

named "Budu". You use static methods in the WHTag class create and retrieve tags, and

assign them to taggable objects.

Note: You can subclass WHTag to implement access control, workflow or other special applications. For

example, the WireHoseEngageSupport framework defines several WHTag subclasses which implement

roles−based access control for taggable objects −− including WHEngageTag, which defines tags that are

taggable.

Personalization

Users

WHUser is the parent entity for all WireHose users. The login "guest" is reserved for the

guest user, which is who users are until they login. Guest users are generally created and

retrieved automatically; you can override the default guest user creation behavior through a

delegate method.

WireHose business logic concepts

Developing Applications with WireHose (Mac OS X) 16

Channels

Channels are defined by the WHChannel interface. Each user may have one or more

channels, which represent objects which have been personalized, such as fetchers, polls, stock

trackers, etc. WireHose also defines global channels, which belong to all users. WHUser

provides several methods for filtering global and user channels.

Channels belong to individual users, and each channel keeps a reference to the factory which

created it. Channels are bound to a specific area on the user's page through the areaName

property; the default area name is "main."

The order in which channels appear within an area is determined by the channel's

importance property; channels with lower importance appear before higher importance.

Subclasses of WHUser can override the allUserChannels method to include channels which

are not modeled as part of the base "channels" relationship.

Channel factories

Channel factories, defined by the WHChannelFactory interface, are objects which create

channels for users. Typically these are created by an administrator and contain appropriate

preset values, and are presented to users in a checkbox list. They are also often used to cache

expensive calculations or database fetches. They can also be used to provide default settings

for channels that can be overridden on a per−user basis.

Fetchers

Fetchers fetch resources from a remote source, such as a database or web service. Fetches are

considered expensive operations, so fetchers cache the results of their fetches.

WireHose provides several classes which work together to fetch and cache objects, and uses

notifications to ensure that caches are invalidated when necessary. Often when working with

fetchers, you will be fetching objects which support a particular interface such as

WHTaggable, so fetchers provide methods to filter the returned objects based on entity or

interface names.

WireHose business logic concepts

Developing Applications with WireHose (Mac OS X) 17

There are several types of fetchers which act as channels for users. The most commonly used

fetchers in WireHose are those that retrieve taggable and indexable objects based on optional

and required tags and keywords.

WireHose business logic concepts

Developing Applications with WireHose (Mac OS X) 18

Getting started

The first thing you'll do is create the Hello World project. WireHose includes Project Builder

templates which include the default frameworks and files needed by all WireHose

applications.

The next step will be to set up the database for Hello World. This document includes specific

instructions for setting up OpenBase or FrontBase, but you can use any database supported by

WebObjects.

Before you begin

Before creating any WireHose projects, be sure you have done these steps:

Install WireHose on your system.1.

Copy the WireHoseExtras folder to your hard drive (for example, in your home

directory).

2.

Copy the contents of WireHoseExtras/Developer to ~/Developer. This folder

contains Project Builder templates for creating WireHose applications, frameworks,

components, and more.

3.

Creating the project

Now you'll create the project. WireHose includes Project Builder templates which include the

default frameworks and files needed by all WireHose applications.

Launch Project Builder, and choose New Project... from the File menu.1.

Scroll down to WireHose Application template, and click Next.2.

Developing Applications with WireHose (Mac OS X) 19

Name the new project "HelloWorld", and click Finish.3.

If you are asked "Some of your project settings need to be updated for the latest

version of WebObjects. Would you like to update them now?", click OK.

4.

Creating the database

 The WireHose frameworks are designed to work with any database supported by

WebObjects, and offer several features to make cross−database development and deployment

easier.

This document includes specific instructions for setting up OpenBase or FrontBase, but you

can use any database supported by WebObjects. See the WireHose documentation more

information on using WireHose with other databases.

Getting started

Developing Applications with WireHose (Mac OS X) 20

Setting up OpenBase

Launch OpenBaseManager.1.

Choose New... from the Database menu.2.

Name the database HelloWorld, and click Set.3.

Choose Start from the Database menu.4.

Choose Run SQL Script from the Tools menu.5.

Select WireHoseBase.sql in the WireHoseExtras/SampleData/OpenBase/ folder,

and click Open.

6.

Getting started

Developing Applications with WireHose (Mac OS X) 21

Setting up FrontBase

Launch FrontBaseManager.1.

Choose New Database... from the File menu.2.

Create the database on localhost, call it HelloWorld, and click Create.3.

Select the HelloWorld database in the Monitored Databases window, and click

Connect.

4.

Select the user _system, and click Open.5.

Select User in the connection pane, and click New User.6.

Set the user name to HelloWorld and click Create.7.

Getting started

Developing Applications with WireHose (Mac OS X) 22

Close the connection window.8.

Select the HelloWorld database in the Monitored Databases window, and click

Connect.

9.

Select the user HelloWorld, and click Open.10.

Select SQL Interpreter in the connection pane, and click Execute File.11.

Select WireHoseBase.sql in the WireHoseExtras/SampleData/FrontBase/ folder,

and click Open.

12.

Getting started

Developing Applications with WireHose (Mac OS X) 23

Close the connection window.13.

Configuring Hello World for the database

The WireHose frameworks are database independent; a WireHose application can use any

database which is compatible with WebObjects. There are two primary techniques which are

used to achieve this: replacing the adaptor dictionary, and the use of attribute prototypes.

Note: For maximum performance, WireHose fetchers use custom SQL, some of which may be incompatible

with some databases. Use of this SQL can be controlled by several system properties. In general, any

database which supports subselects should work properly with WireHose, though databases that support

SQL set operators such as INTERSECT and EXCEPT (or MINUS) will perform better.

The adaptor dictionary

Each EOModel in a WebObjects application contains information in its index.eomodeld file

called the "connection dictionary", which tells WebObjects which database on which host to

connect to, which JDBC driver to use, etc.

WireHose can replace the database adaptor and connection dictionary on the fly when each

EOModel is loaded. This allows you to switch between multiple databases by specifying a

different adaptor dictionary on the command line when launching your application, as, for

example, during development versus deployment.

An adaptor dictionary file is plain text in plist format, with two keys, "adaptorName" and

"connectionDictionary". There are sample adaptor dictionaries for FrontBase, OpenBase and

Oracle located in the WireHoseExtras/SampleData/sql directory.

Note: You can use the WHAdaptorDict property to specify the name of the adaptor dictionary to use at

runtime. You can specify either the name of an adaptor dictionary in your application's Bundle Resources,

or the full pathname to the desired file.

To set up the adaptor dictionary for Hello World:

Getting started

Developing Applications with WireHose (Mac OS X) 24

Select the adaptorDict.plist file in the Resources group in the Files pane in the

Hello World project.

1.

Uncomment the appropriate lines for your database.

If you're using OpenBase:

URL = "jdbc:openbase://127.0.0.1/HelloWorld";

driver = "com.openbase.jdbc.ObDriver";

If you're using FrontBase:

URL = "jdbc:FrontBase://localhost/HelloWorld/user=HelloWorld";

driver = "jdbc.FrontBase.FBJDriver";

2.

Getting started

Developing Applications with WireHose (Mac OS X) 25

Database and prototype frameworks

The WireHose Application project template automatically includes references to OpenBase

and FrontBase−specific frameworks. You'll need to add the frameworks for your database to

the Application Server target so they'll get loaded at runtime.

All WireHose−specific entity attributes are defined by a handful of attribute prototypes.

Using prototypes allows you to change the definition of every WireHose entity in a single

place, no matter which model or framework they reside in (including entities defined in the

WireHoseBase framework).

See Apple's Using EOModeler documentation for details about creating prototype definitions.

It is a convention in WireHose applications to place the prototypes model in a framework, so

that adding this framework to any application will cause WebObjects to use your prototype

definitions instead of the ones defined in the WireHoseBase framework.

Note: To use a prototypes framework in a command−line tool, make sure there is entry in your classpath

which points to the prototypes framework directory as there won't be a jar file to point to, e.g.,

"...:/Library/MyPrototypes.framework:..."

To add the database frameworks to Hello World's Application Server target:

Make Application Server the active target.1.

Expand the Frameworks group in the Files pane.2.

Expand the group for your database.3.

Check the boxes next to the frameworks for your database.4.

Getting started

Developing Applications with WireHose (Mac OS X) 26

http://developer.apple.com/documentation/WebObjects/UsingEOModeler/index.html

If you're using OpenBase:

OpenBasePKPlugIn.framework

WHOpenBasePrototypes.framework

If you're using FrontBase:

FrontBasePlugIn.framework

WHFrontBasePrototypes.framework

Make HelloWorld the active target.5.

Getting started

Developing Applications with WireHose (Mac OS X) 27

Modeling the data

The key step in developing any application is modeling the data, and WireHose applications

are no different. In this section you'll use templates to model RSS feeds and items as

enterprise objects which can be categorized by tags and indexed by keywords.

An XML mapping model will be used to extract items from an RSS feed. A list of sample

feeds is provided in RSS format, with each item representing a feed.

WireHose provides several utility methods to perform tasks such as fetching XML content

from remote URLs, and inserting resources into the database. You'll use these to write a feed

crawler, which will fetch feeds, extract items, and insert them into the database.

In its purest form, an RSS feed contains a list of items, each of which has a title, link and

optional description. There is often much more information available in the feed, such as the

date each item was published, but to keep this application simple, Hello World will only deal

with titles, links and descriptions.

Modeling feeds

WireHose includes Project Builder templates to create new resources from scratch, which is

the approach we'll take in this tutorial. See the reference documentation for WHTaggable and

WHIndexable for details about adding support to existing enterprise objects.

Creating RSSFeed

Expand the Entities group in the Files pane.1.

Choose New File... from the File menu. Scroll down to the WireHose Resource

template and click Next.

2.

Developing Applications with WireHose (Mac OS X) 28

Name it RSSFeed, add it to the Application Server target in the Hello World project,

and click Finish.

3.

Open the RSSFeed.eomodeld file in EOModeler.4.

Choose Set Adaptor Info... from the Model menu.5.

Set the URL and driver as entered in your adaptor dictionary:6.

Modeling the data

Developing Applications with WireHose (Mac OS X) 29

If you're using OpenBase:

Set the URL to jdbc:openbase://127.0.0.1/HelloWorld and the driver to

com.openbase.jdbc.ObDriver

If you're using FrontBase:

Set the URL to jdbc:FrontBase://localhost/HelloWorld/user=HelloWorld and the

driver to jdbc.FrontBase.FBJDriver

Click OK.7.

Change the name of the MyResource entity to RSSFeed, its table to RSSFeed, and

its class name to RSSFeed.

8.

Change the name of the MyResourceKeyword entity to RSSFeedKeyword, and its

table to RSSFeedKw.

9.

Change the name of the MyResourceTag entity to RSSFeedTag, and its table to

RSSFeedTag.

10.

Modeling the data

Developing Applications with WireHose (Mac OS X) 30

Adding attributes

The new resource template includes several attributes which are part of the WHTaggable and

WHIndexable interface. The dateAdded attribute is common to both interfaces, and allows

users to search for recently inserted resources. The indexed property and the

resourceKeywords and keywords relationships provide the ability to search by

keywords, while resourceTags is used to provide a to−many relationship to available

tags. The affiliate attribute is an optional convention which allows partitioning

WireHose resources, channel factories, tags and other objects into groups.

First you'll model the RSSFeed's title. We're calling it "name" instead of "title" because it's a

convention for WireHose resources to have a name, if possible.

Select the RSSFeed entity.1.

Choose Add Attribute from the Property menu.2.

Set its prototype to whString255.

Note: The whString255 prototype defines a column of type CHAR(255). You can safely redefine

all the whString prototypes to be VARCHAR columns of any size. See the WHEnterpriseObject

reference for details.

3.

Remove the padlock icon so this attribute isn't used for locking.4.

Set the attribute's name to name, and set its column name to NAME.5.

Modeling the data

Developing Applications with WireHose (Mac OS X) 31

Next, you'll model the RSSFeed's link.

Choose Add Attribute from the Property menu.1.

Set its prototype to whString255.2.

Remove the padlock icon so this attribute isn't used for locking.3.

Set the attribute's name to link, and set its column name to LINK.4.

Next, you'll model the RSSFeed's description. Since "description" is a reserved word in

WebObjects, it's a WireHose convention to name the attribute "textDescription".

Choose Add Attribute from the Property menu.1.

Set its prototype to whString255.2.

Remove the padlock icon so this attribute isn't used for locking.3.

Set the attribute's name to textDescription, and set its column name to TEXTDESC.4.

There are a number of other attributes defined in the RSS 2.0 specification which we are not

modeling here for simplicity's sake. However, we will model some more attributes which will

be used in the Hello World application.

The first is a "lastFetchDate" property, which is the date the items from a feed were last

imported.

Choose Add Attribute from the Property menu.1.

Set its prototype to whTimestamp.2.

Remove the padlock icon so this attribute isn't used for locking.3.

Set the attribute's name to lastFetchDate, and set its column name to LASTFETCH.4.

Since there are several versions of RSS, some feeds may be valid but not supported by Hello

World. The last attribute you'll model is a boolean indicating whether or not the feed was

valid the last time we fetched, so the crawler can skip those feeds the next time.

Choose Add Attribute from the Property menu.1.

Set its prototype to whBoolean.

Note: There is no standard way to store booleans in a database; some support BOOLEAN

columns, while others may store a "Y" or "N" in a CHAR(1) column, or a zero or one in an

INTEGER. WireHose provides the whBoolean prototype and several utility methods which make

2.

Modeling the data

Developing Applications with WireHose (Mac OS X) 32

it easy to deal with varying definitions for boolean attributes in a transparent fashion.

Remove the padlock icon so this attribute isn't used for locking.3.

Set the attribute's name to lastFetchInvalid, and set its column name to

WASINVALID.

Note: Your Java code will actually call methods named lastFetchWasInvalid and

setLastFetchWasInvalid.

4.

Uniquing items

Next you'll tell WireHose which attributes should be used to distinguish one feed from

another during importing. In this case, duplicate feeds have either the same name or link.

Select the RSSFeed entity.1.

Choose Inspector... from the Tools menu.2.

Select the EOEntity UserInfo pane.3.

Click Add.4.

Set the key name to WHKeysForUniquing, and its value to (link, name).5.

Modeling the data

Developing Applications with WireHose (Mac OS X) 33

Modeling items

You'll use the same techniques to model the RSSItem entity as you did for RSSFeed. Since

the two share some common attributes, you'll be able to copy and paste them to save some

time.

Creating RSSItem

Note: The new resource template creates a new EOModel for each resource entity. You can leave each

entity in a separate model file, or merge them into a single model by copying and pasting the entities. For

this tutorial we'll leave them in separate models.

Select the Entities group in the Files pane in Project Builder.1.

Choose New File... from the File menu. Scroll down to the WireHose Resource

template and click Next.

2.

Name it RSSItem, add it to the Application Server target in the Hello World project,

and click Finish.

3.

Open the RSSItem.eomodeld file in EOModeler.4.

Choose Set Adaptor Info... from the Model menu.5.

Set the URL and driver as entered in your adaptor dictionary:

If you're using OpenBase:

6.

Modeling the data

Developing Applications with WireHose (Mac OS X) 34

Set the URL to jdbc:openbase://127.0.0.1/HelloWorld and the driver to

com.openbase.jdbc.ObDriver

If you're using FrontBase:

Set the URL to jdbc:FrontBase://localhost/HelloWorld/user=HelloWorld and the

driver to jdbc.FrontBase.FBJDriver

Click OK.7.

Change the name of the MyResource entity to RSSItem, its table to RSSItem, and

its class name to RSSItem.

8.

Change the name of the MyResourceKeyword entity to RSSFeedKeyword, and its

table to RSSItemKw.

9.

Change the name of the MyResourceTag entity to RSSItemTag, and its table to

RSSItemTag.

10.

Adding attributes

Since RSS feeds and items both contain titles, links and descriptions, you can copy and paste

the attribute definitions from the RSSFeed entity into RSSItem.

Switch to RSSFeed.eomodeld.1.

Select the RSSFeed entity.2.

Select the link, name and textDescription attributes.3.

Modeling the data

Developing Applications with WireHose (Mac OS X) 35

Choose Copy from the Edit menu.4.

Switch to RSSitem.eomodeld.5.

Select the RSSItem entity.6.

Choose Paste from the Edit menu.7.

Remove the padlock icon from the textDescription, link and name attributes so they

won't be used for locking.

8.

Uniquing items

Next you'll tell WireHose which attributes should be used to distinguish one item from

another during importing. This is important since new items will typically be added to the top

of the feed, pushing older items off the bottom. If Hello World's crawler didn't have a method

for determining if it had already seen an item, the database would be cluttered with

duplicates.

In this case, duplicate items have either the same name or link.

Select the RSSItem entity.1.

Choose Inspector... from the Tools menu.2.

Select the EOEntity UserInfo pane.3.

Click Add.4.

Set the key name to WHKeysForUniquing, and its value to (link, name).5.

Modeling the data

Developing Applications with WireHose (Mac OS X) 36

Note: The RSS 2.0 specification allows feed providers to provide an optional attribute for each item, called

"guid". This globally unique identifier is specifically intended help aggregators determine if an item has

been seen previously, but not all feeds use it. For simplicity, we are ignoring this attribute in this tutorial.

Relating feeds and items

Now you'll model a one−to−many relationship between feeds and items, so that each feed has

multiple items, and each item has a single feed.

Note: Another way to model this relationship would be to model RSSFeed as a subentity of WHTag which

would implement the WHTaggable and WHIndexable interfaces. Creating resource types which can be used

to tag other resources is a very powerful technique, but beyond the scope of this tutorial.

Relating items to feeds

First you'll add a "feedID" attribute to RSSItem.

Select the RSSItem entity.1.

Choose Add Attribute from the Property menu.2.

Set its prototype to whIntegerID.

Note: By convention, all primary key attributes in a WireHose application use the "whIntegerID"

prototype, except for WHTag, which uses "whBinaryID". Both these prototypes are defined as

INTEGER columns by default.

WireHose provides special support for using binary primary keys. WireHose will generate them

for you, and encode a reference to the entity directly in the primary key itself. This can improve

performance by avoiding extra fetches when resolving to−one faults against abstract entities.

3.

Remove the padlock icon so this attribute isn't used for locking.4.

Remove the diamond icon so this attribute isn't a class property.5.

Check the "Allows null" column so this attribute can be null6.

Set the attribute's name to feedID, and set its column name to FEEDID.7.

Next, add the relationship.

Choose Add Relationship from the Property menu.1.

Modeling the data

Developing Applications with WireHose (Mac OS X) 37

Choose Inspector... from the Tools menu.2.

Set the relationship type to To One.3.

Change the destination model to RSSFeed.

Note: You may need to quit and relaunch EOModeler to see RSSFeed in the destination model

popup.

4.

Change the destination entity to RSSFeed.5.

Set the source attribute to feedID, and the destination attribute to resourceID.6.

Click Connect.7.

Change the relationship's name to feed.8.

Relating feeds to items

Now you'll add the inverse relationship.

Switch to RSSFeed.eomodeld.1.

Choose Add Relationship from the Property menu.2.

Choose Inspector... from the Tools menu.3.

Set the relationship type to To Many.4.

Change the destination model to RSSItem.

Note: You may need to quit and relaunch EOModeler to see RSSItem in the destination model

popup.

5.

Change the destination entity to RSSItem.6.

Set the source attribute to resourceID, and the destination attribute to feedID.7.

Modeling the data

Developing Applications with WireHose (Mac OS X) 38

Click Connect.8.

Change the relationship's name to items.9.

Generating SQL and Java

Next you'll generate the SQL and Java for the RSSFeed and RSSItem entities. The Java

classes will inherit from WHConcreteResource, which is a default implementation of the

WHTaggable and WHIndexable interfaces.

Generating SQL and Java for feeds

Switch to RSSFeed.eomodeld.1.

Select the RSSFeed, RSSFeedKeyword and RSSFeedTag entities.2.

Choose Generate SQL... from the Property menu3.

Turn on the Create Tables, Primary Key Constraints and Foreign Key

Constraints options, and uncheck everything else.

4.

Click Execute SQL.5.

Modeling the data

Developing Applications with WireHose (Mac OS X) 39

Close the SQL Generation window.6.

Select the RSSFeed entity7.

Choose Generate Java Files... from the Property menu.8.

Click Overwrite.9.

Open RSSFeed.java in Project Builder.10.

Add this line:

import com.wirehose.base.*;

11.

Change the class declaration to:

public class RSSFeed extends com.wirehose.base.WHConcreteResource

12.

Add this method so feeds are inserted into the database with a lastFetchDate in

the past:

public void awakeFromInsertion(EOEditingContext ec) {

 super.awakeFromInsertion(ec);

 setLastFetchDate(new NSTimestamp(0));

 setLastFetchWasInvalid(false);

}

13.

To take advantage of the boolean attribute support in WireHose, add these two

methods:

14.

Modeling the data

Developing Applications with WireHose (Mac OS X) 40

public boolean lastFetchWasInvalid() {

 return WHEnterpriseObject.storedBooleanValueForKey(this, "lastFetchInvalid");

}

public void setLastFetchWasInvalid(boolean value) {

 WHEnterpriseObject.takeStoredBooleanValueForKey(this, value, "lastFetchInvalid");

}

Then change the lastFetchValid and setLastFetchValid methods so they

accept and return instances of java.lang.Object:

public Object lastFetchInvalid() {

 return storedValueForKey("lastFetchInvalid");

}

public void setLastFetchInvalid(Object value) {

 takeStoredValueForKey(value, "lastFetchInvalid");

}

15.

Modeling the data

Developing Applications with WireHose (Mac OS X) 41

Generating SQL and Java for items

Switch to RSSItem.eomodeld.1.

Select the RSSItem, RSSItemKeyword and RSSItemTag entities.2.

Choose Generate SQL... from the Property menu3.

Turn on the Create Tables, Primary Key Constraints and Foreign Key

Constraints options, and uncheck everything else.

4.

Click Execute SQL.5.

Close the SQL Generation window.6.

Select the RSSItem entity7.

Choose Generate Java Files... from the Property menu.8.

Click Overwrite.9.

Open RSSItem.java in Project Builder.10.

Add this line:

import com.wirehose.base.*;

11.

Change the class declaration to:

public class RSSItem extends com.wirehose.base.WHConcreteResource

12.

Modeling the data

Developing Applications with WireHose (Mac OS X) 42

Importing feeds

In this section, you'll write an importer which will insert information about some RSS feeds

into the database.

There are a number of websites which provide information about available RSS feeds.

WireHose comes with a sample list of feeds collected from Syndic8.com. The list is provided

in RSS 2.0 format, so you'll be able to reuse portions of the feed importer code in the feed

crawler.

Sample feeds list

The first step is to add the sample feeds list to the Hello World project.

Expand the Resources group in the Files pane.1.

Choose Add Files... from Project menu.2.

Select SampleRSSFeeds.xml in the WireHoseExtras/SampleData/data/ folder, and

click Add.

3.

Check "Copy items into destination group's folder (if needed)", add it to the

Application Server target, and click Add.

4.

The sample feeds file looks like this:

Developing Applications with WireHose (Mac OS X) 43

http://www.syndic8.com/

<?xml version="1.0" encoding="ISO−8859−1" ?>

<rss version="2.0">

<channel>

<title>WireHose Hello World RSS Feed List (from Syndic8.com)</title>

<link></link>

<description>Sample RSS feed list for WireHose Hello World tutorial</description>

<webMaster>support@bulldogbeach.com</webMaster>

<pubDate>2003−07−01</pubDate>

<buildDate>2003−07−01</buildDate>

<item>

 <title>About.com Botany</title>

 <link>http://www.growinglifestyle.com/h117/index.rss</link>

 <description>Latest articles at About.com Botany (from Growing Lifestyle).</description>

 <category>Consumer/Gardening</category>

</item>

<item>

 <title>About.com Gardening</title>

 <link>http://www.growinglifestyle.com/h106/index.rss</link>

 <description>Latest articles at About.com Gardening (from Growing Lifestyle).</description>

 <category>Consumer/Gardening</category>

</item>

...

</channel>

</rss>

Importing feeds

Developing Applications with WireHose (Mac OS X) 44

XML mapping model

Mapping models are used to translate XML data to objects. For importing new resources into

the database, the convention is to map the XML data to an array of NSDictionary objects

which represent snapshots of the individual items. For more information about mapping

models, see the WebObjects documentation.

Expand the Resources group in the Files pane.1.

Choose Add Files... from Project menu.2.

Select rss20MappingModel.xml in the WireHoseExtras/SampleData/maps/

folder, and click Add.

3.

Check "Copy items into destination group's folder (if needed)", add it to the

Application Server target, and click Add.

4.

Here's what the mapping model looks like. This mapping model specifies all the attributes in

an RSS 2.0 file, including the ones Hello World is ignoring. The attributes used by Hello

World are highlighted.

Importing feeds

Developing Applications with WireHose (Mac OS X) 45

<?xml version="1.0" encoding="iso−8859−1"?>

<model>

 <entity name="NSMutableDictionary" xmlTag="rss" unmappedTagsKey="unmappedTags">

 <property name="channel" xmlTag="channel"/>

 <property name="version" xmlTag="version"/>

 </entity>

 <entity name="NSMutableDictionary" xmlTag="channel" unmappedTagsKey="unmappedTags" >

 <property name="name" xmlTag="title"/>

 <property name="link" xmlTag="link"/>

 <property name="textDescription" xmlTag="description"/>

 <property name="language" xmlTag="language"/>

 <property name="copyright" xmlTag="copyright"/>

 <property name="managingEditor" xmlTag="managingEditor"/>

 <property name="webMaster" xmlTag="webMaster"/>

 <property name="pubDate" xmlTag="pubDate"/>

 <property name="lastBuildDate" xmlTag="lastBuildDate"/>

 <property name="tags" xmlTag="category" forceList="YES"/>

 <property name="generator" xmlTag="generator"/>

 <property name="docs" xmlTag="docs"/>

 <property name="cloud" xmlTag="cloud"/>

 <property name="ttl" xmlTag="ttl"/>

 <property name="image" xmlTag="image"/>

 <property name="rating" xmlTag="rating"/>

 <property name="textInput" xmlTag="textInput"/>

 <property name="skipHours" xmlTag="skipHours"/>

 <property name="skipDays" xmlTag="skipDays"/>

 <property name="items" xmlTag="item" forceList="YES"/>

 </entity>

 <entity name="NSMutableDictionary" xmlTag="image" unmappedTagsKey="unmappedTags">

 <property name="url" xmlTag="url"/>

 <property name="title" xmlTag="title"/>

Importing feeds

Developing Applications with WireHose (Mac OS X) 46

 <property name="link" xmlTag="link"/>

 <property name="width" xmlTag="width"/>

 <property name="height" xmlTag="height"/>

 <property name="description" xmlTag="description"/>

 </entity>

 <entity name="NSMutableDictionary" xmlTag="cloud" unmappedTagsKey="unmappedTags">

 <property name="domain" xmlTag="domain"/>

 <property name="port" xmlTag="port"/>

 <property name="registerProcedure" xmlTag="registerProcedure"/>

 <property name="protocol" xmlTag="protocol"/>

 </entity>

 <entity name="NSMutableDictionary" xmlTag="textInput" unmappedTagsKey="unmappedTags">

 <property name="title" xmlTag="title"/>

 <property name="description" xmlTag="description"/>

 <property name="name" xmlTag="name"/>

 <property name="link" xmlTag="link"/>

 </entity>

 <entity name="NSMutableDictionary" xmlTag="item" unmappedTagsKey="unmappedTags">

 <property name="name" xmlTag="title"/>

 <property name="link" xmlTag="link"/>

 <property name="textDescription" xmlTag="description"/>

 <property name="author" xmlTag="author"/>

 <property name="tags" xmlTag="category" forceList="YES"/>

 <property name="comments" xmlTag="comments"/>

 <property name="enclosure" xmlTag="enclosure"/>

 <property name="guid" xmlTag="guid"/>

 <property name="pubDate" xmlTag="pubDate"/>

 <property name="source" xmlTag="source"/>

 </entity>

 <entity name="NSMutableDictionary" xmlTag="source" unmappedTagsKey="unmappedTags" contentsKey="description">

 <property name="description" xmlTag="description"/>

Importing feeds

Developing Applications with WireHose (Mac OS X) 47

 <property name="url" xmlTag="url"/>

 </entity>

 <entity name="NSMutableDictionary" xmlTag="enclosure" unmappedTagsKey="unmappedTags">

 <property name="url" xmlTag="url"/>

 <property name="length" xmlTag="length"/>

 <property name="type" xmlTag="type"/>

 </entity>

 <entity name="NSMutableDictionary" xmlTag="category" unmappedTagsKey="unmappedTags" contentsKey="id">

 <property name="id" xmlTag="id"/>

 <property name="domain" xmlTag="domain"/>

 </entity>

 <entity name="NSMutableDictionary" xmlTag="guid" unmappedTagsKey="unmappedTags" contentsKey="id">

 <property name="id" xmlTag="id"/>

 <property name="isPermaLink" xmlTag="isPermaLink"/>

 </entity>

 <entity name="NSMutableDictionary" xmlTag="enclosure" unmappedTagsKey="unmappedTags">

 <property name="title" xmlTag="title"/>

 <property name="description" xmlTag="description"/>

 <property name="name" xmlTag="name"/>

 <property name="link" xmlTag="link"/>

 </entity>

</model>

Importing feeds

Developing Applications with WireHose (Mac OS X) 48

Fetching dictionaries

Now you'll start building Hello World's importer. This class will use the WHImporter utility

class to do most of its heavy lifting.

Expand the Classes group in the Files pane.1.

Chose New File... from File menu. Scroll down to the Pure Java Java Class template

and click Next.

2.

Name it Importer.java, add it to the Application Server target in the Hello World

project, and click Finish.

3.

Add these lines to Importer.java4.

Importing feeds

Developing Applications with WireHose (Mac OS X) 49

import com.wirehose._util.*;

import com.wirehose.base.*;

Add this method:

public static void importFeeds() {

 // fetch feeds list as dictionary

 NSMutableDictionary rss = WHImporter.fetchDictionaryFromURL(

 "SampleRSSFeeds.xml",

 "Contents/Resources/rss20MappingModel.xml");

 // extract feeds from dictionary and clean up tags

 NSMutableArray snapshots =

 cleanSnapshots(rss.valueForKeyPath("channel.items"));

 EOEditingContext ec = new EOEditingContext();

 ec.lock();

 try {

 // insert resources into editing context

 WHImporter.insertResources(

 ec, snapshots, "RSSFeed", "Feeds/", null,

 WHImporter.IgnoreAndTag, true, true, true, true, false);

 ec.saveChanges();

 } catch (Exception e) {

 System.out.println("Error importing resources: "+e);

 e.printStackTrace();

 }

 try {

 ec.saveChanges();

 } catch (Exception e) {

 System.out.println("Exception saving changes: "+e);

 }

 ec.unlock();

 ec.dispose();

}

This method uses two methods from WHImporter. The first,

fetchDictionaryFromURL, takes two arguments which specify the location of

an XML file to be imported, and the mapping model which will turn the XML into a

5.

Importing feeds

Developing Applications with WireHose (Mac OS X) 50

dictionary.

The other WHImporter method, insertResources, is a general−purpose utility

for inserting resources into a database. It takes several arguments which specify how

to handle resources which already exist in the database, whether or not to index

keywords for newly inserted resources, whether to add tags to resources, etc.

The arguments used here ensure that if a new resource already exists in the database,

the new resource will be ignored rather than inserted. If any tags are specified on the

new resource, those tags will be assigned to the already existing resource. This

handles the case where an identical resource has been imported multiple times in

multiple categories, by having only a single resource with multiple tags.

The "Feeds/" argument specifies a tag path prefix. Any categories described in the

feed will be appended to this string before being turned into tags. For example, if a

feed has an assigned category of "Consumer/Gardening", the tag used will actually be

"Feeds/Consumer/Gardening".

Cleaning snapshots

The mapping model does a fairly good job of translating the XML input into dictionaries, but

it has some quirks, and WHImporter's insertResources expects those dictionaries to be

in a particular format. The importer needs a cleanSnapshots method which will fix what

we get from fetchDictionaryFromURL.

Add this method:

static NSMutableArray cleanSnapshots(Object whatWeFound) {

 NSMutableArray snapshots;

 // "forcelist" in the mapping model is unreliable

 // sometimes we get a single object, so pack it into an array

 if (whatWeFound instanceof NSArray) {

 snapshots = (NSMutableArray)whatWeFound;

 } else {

 snapshots = new NSMutableArray(whatWeFound);

 }

1.

Importing feeds

Developing Applications with WireHose (Mac OS X) 51

 NSMutableDictionary snapshot;

 NSKeyValueCoding tags;

 // iterate through snapshots

 // for each snapshot, extract tags from content key

 for (int i=0, count=snapshots.count(); i<count; i++) {

 snapshot = (NSMutableDictionary)snapshots.objectAtIndex(i);

 tags = (NSKeyValueCoding)snapshot.objectForKey("tags");

 if (tags != null) {

 // tags will be either a dictionary with one key "id"

 // mapping to a string indicating the tagpath,

 // or an array of dictionaries, each with an "id" key.

 // Calling valueForKey on an array will construct a new

 // array with the results of calling valueForKey on each

 // object in the old array... nice.

 // So we end up with either a string, or an array of strings

 snapshot.setObjectForKey(tags.valueForKey("id"), "tags");

 snapshots.replaceObjectAtIndex(snapshot, i);

 }

 }

 return snapshots;

}

The mapping model specifies that RSS items should be mapped to a list through its

forceList property. Sometimes the XML importer returns a single item instead of

a list, so this method will pack the object into an array.

The RSS 2.0 format specifies that <category> is a container element. The

contentsKey property in the mapping model specifies that the XML importer

should map a category to a dictionary with a single key, "id", which maps to the name

of the category itself. If an item has multiple category entries, then the importer will

return an array of dictionaries. The cleanSnapshots method extracts the category

(or categories) from the dictionary (or dictionaries).

Importing feeds

Developing Applications with WireHose (Mac OS X) 52

Enabling the importer

Next, we'll add a property that controls whether or not to import feeds at runtime, and actually

call the importer.

Select the Properties file in the Resources group in the Files pane, and add these

lines:

controls whether feeds are imported

when the application starts up

ImportFeeds = NO

1.

Select Application.java in the Classes group, and uncomment this line in the

constructor:

NSNotificationCenter.defaultCenter().addObserver(

 this, new NSSelector("initialize", new Class[] { NSNotification.class }),

 WHApplicationHelper.ApplicationHelperDidFinishInitializing, null);

WireHose provides an object called the WHApplicationHelper to handle

application−level behavior. Among other tasks, WHApplicationHelper handles

various initialization and setup tasks. Once it's done, it posts an

ApplicationHelperDidFinishInitializing notification which indicates

that it's now safe to access WireHose tags and other data structures.

2.

Importing feeds

Developing Applications with WireHose (Mac OS X) 53

Now add this method, which will be called in response to the notification:

public void initialize(NSNotification notification) {

 if (NSPropertyListSerialization.booleanForString(

 System.getProperty("ImportFeeds"))) {

 Importer.importFeeds();

 }

}

If the "ImportFeeds" property evaluates to true (or "YES"), then the importer will run.

3.

Enabling logging

WireHose uses the NSLog class to provide logging about its behavior. In this example, we

want to enable logging for the WHImporter class so we can see the feeds being imported.

Choose Edit Active Executable 'HelloWorld' from the Project menu.1.

Click the + icon under Launch Arguments to add each of these arguments:

−WODebuggingEnabled NO

−NSDebugGroups "(com.wirehose.base.WHLog.DebugGroupImporting,

 com.wirehose.base.WHLog.DebugGroupWireHose)"

−NSDebugLevel NSLog.DebugLevelCritical

−ImportFeeds YES

2.

Check the Use column for each of the arguments.3.

Importing feeds

Developing Applications with WireHose (Mac OS X) 54

Running the importer

Now build and launch Hello World, and watch as the feeds are imported. You don't need to

import all the feeds for this example, so you can stop the application once a few dozen have

been imported. The output should look something like this:

Importing feeds

Developing Applications with WireHose (Mac OS X) 55

Reading MacOSClassPath.txt ...

Launching HelloWorld.woa ...

java −XX:NewSize=2m −Xmx64m −Xms32m −DWORootDirectory="/System" −DWOLocalRootDirectory=""

−DWOUserDirectory="/Users/garyt/Library/BuildProducts" −DWOEnvClassPath=""

−DWOApplicationClass=Application −DWOPlatform=MacOS −Dcom.webobjects.pid=2597 −classpath

WOBootstrap.jar com.webobjects._bootstrap.WOBootstrap −WODebuggingEnabled NO −NSDebugGroups

"(com.wirehose.base.WHLog.DebugGroupImporting, com.wirehose.base.WHLog.DebugGroupWireHose)"

−NSDebugLevel NSLog.DebugLevelCritical −ImportFeeds YES

appRoot is /Users/garyt/Library/BuildProducts/HelloWorld.woa/Contents

Loading /Users/garyt/Library/BuildProducts/HelloWorld.woa/Contents/MacOS/MacOSClassPath.txt

Generated classpath:

 /Users/garyt/Library/BuildProducts/HelloWorld.woa/Contents/Resources/Java/HelloWorld.jar

 /System/Library/Frameworks/JavaFoundation.framework/Resources/Java/javafoundation.jar

 /System/Library/Frameworks/JavaEOControl.framework/Resources/Java/javaeocontrol.jar

 /System/Library/Frameworks/JavaEOAccess.framework/Resources/Java/javaeoaccess.jar

 /System/Library/Frameworks/JavaWebObjects.framework/Resources/Java/javawebobjects.jar

 /System/Library/Frameworks/JavaJDBCAdaptor.framework/Resources/Java/javajdbcadaptor.jar

 /System/Library/Frameworks/JavaWOExtensions.framework/Resources/Java/JavaWOExtensions.jar

 /System/Library/Frameworks/JavaXML.framework/Resources/Java/javaxml.jar

 /Library/Frameworks/WireHoseBase.framework/Resources/Java/WireHoseBase.jar

 /Library/Frameworks/WireHoseLayoutSupport.framework/Resources/Java/WireHoseLayoutSupport.jar

 /Library/Frameworks/WireHoseWOBuilderBindings.framework/

 /Library/Frameworks/WHOpenBasePrototypes.framework/

 /Library/Frameworks/OpenBasePKPlugIn.framework/Resources/Java/OpenBasePKPlugIn.jar

 /Users/garyt/Library/Java/

Importing feeds

Developing Applications with WireHose (Mac OS X) 56

 /Library/Java/

 /System/Library/Java/

 /Network/Library/Java

 /Library/WebObjects/Extensions/activation.jar

 /Library/WebObjects/Extensions/avalon−framework−4.1.2.jar

 /Library/WebObjects/Extensions/axis−ant.jar

 /Library/WebObjects/Extensions/axis.jar

 /Library/WebObjects/Extensions/commons−discovery.jar

 /Library/WebObjects/Extensions/commons−logging.jar

 /Library/WebObjects/Extensions/jaxrpc.jar

 /Library/WebObjects/Extensions/log4j−1.2.4.jar

 /Library/WebObjects/Extensions/logkit−1.0.1.jar

 /Library/WebObjects/Extensions/mail.jar

 /Library/WebObjects/Extensions/saaj.jar

 /Library/WebObjects/Extensions/wsdl4j.jar

 /Library/WebObjects/Extensions/xmlrpc−1.1.jar

 /Library/WebObjects/Extensions/

[2003−07−10 00:31:45 PDT] <main> WireHose Server 3.0 −− The WireHose frameworks are

copyright 2000−2003 Bulldog Beach Interactive, Inc. All rights reserved. WireHose is a

trademark of Bulldog Beach Interactive, Inc.

[2003−07−10 00:31:46 PDT] <main> Created adaptor of class WODefaultAdaptor on port 2020 and

address icecube.bulldogbeach.com/192.168.0.101 with WOWorkerThread minimum of 16 and maximum

of 256

[2003−07−10 00:31:48 PDT] <main> Application project found: Will locate resources in

'/Users/garyt/Desktop/HelloWorld' rather than

Importing feeds

Developing Applications with WireHose (Mac OS X) 57

'/Users/garyt/Library/BuildProducts/HelloWorld.woa' .

[2003−07−10 00:31:52 PDT] <main> Creating LifebeatThread now with: HelloWorld 2020

icecube.bulldogbeach.com/192.168.0.101 1085 30000

[2003−07−10 00:31:52 PDT] <main> Welcome to HelloWorld, another top−quality application

using the WireHose frameworks from Bulldog Beach Interactive. The WireHose frameworks are

Copyright 2000−2003 Bulldog Beach Interactive, Inc. All rights reserved. WireHose is a

trademark of Bulldog Beach Interactive, Inc.

[2003−07−10 00:31:52 PDT] <main> The WireHose−specific defaults are:

 WHAdaptorDict = adaptorDict.plist

 WHComponentsWithContentAreStateless = YES

 WHCookieDomain = default

 WHCookiePath = /

 WHDefaultAffiliate = default

 WHDefaultLayout = Default

 WHDefaultTagEntity = WHTag

 WHDisableAutoSubEntities = YES

 WHDisableGuestPreloading = NO

 WHDisableLayoutDictionaryCaching = YES

 WHDisableSharedObjectLoading = YES

 WHHeaderDebugEnabled = NO

 WHIgnoreMissingEntities = YES

 WHLayoutDict = layoutDict.plist

 WHLookupDictionaryDebugEnabled = NO

 WHRewriteSessionCookiePath = YES

 WHSQLExceptOperator = EXCEPT

Importing feeds

Developing Applications with WireHose (Mac OS X) 58

 WHSQLIntersectOperator = NO

 WHSQLTimestampFormat = default

 WHServerName = 127.0.0.1:2020

 WHServerNameHeaderKeys = ("x−webobjects−server−name", "SERVER_NAME", "WHServerName")

 WHStopWordsList = stopwords.txt

 WHTagCacheSize = 1024

 WHUseEntityHints = YES

 WHUserAgentHeaderKeys = ("HTTP_USER_AGENT", "user−agent")

 WHUserEntityName = WHUser

[2003−07−10 00:31:53 PDT] <main> WHDisableSharedObjectLoading=YES, disabled shared object

loading

[2003−07−10 00:31:53 PDT] <main> EOModel 'RSSFeed' loaded... Connection dictionary replaced.

[2003−07−10 00:31:54 PDT] <main> EOModel 'RSSItem' loaded... Connection dictionary replaced.

[2003−07−10 00:31:54 PDT] <main> EOModel 'WireHoseBase' loaded... Connection dictionary

replaced, URL was 'jdbc:FrontBase://localhost/wirehose/user=wirehose', is now:

'jdbc:openbase://127.0.0.1/HelloWorld'.

[2003−07−10 00:31:54 PDT] <main> EOModel 'WHOpenBasePrototypes' loaded... Didn't find

WHShouldReplaceAdaptorDictionary=YES in userInfo, will not replace adaptor dictionary.

[2003−07−10 00:32:04 PDT] <main> Importing [RSSFeed 3d7457] 2003−07−10 07:32:04 Etc/GMT

About.com Botany...

[2003−07−10 00:32:05 PDT] <main> WireHose frameworks: Found valid license key. Unlimited

transactions per minute. Non−expiring.

[2003−07−10 00:32:07 PDT] <main> [Adding tags to 1...]

[2003−07−10 00:32:07 PDT] <main> Importing [RSSFeed eef0a8] 2003−07−10 07:32:08 Etc/GMT

About.com Gardening...

Importing feeds

Developing Applications with WireHose (Mac OS X) 59

[2003−07−10 00:32:09 PDT] <main> Importing [RSSFeed a16977] 2003−07−10 07:32:09 Etc/GMT

About.com Home Repair...

[2003−07−10 00:32:09 PDT] <main> Importing [RSSFeed b25572] 2003−07−10 07:32:10 Etc/GMT

About.com Interactive Fiction...

[2003−07−10 00:32:11 PDT] <main> Importing [RSSFeed b2311b] 2003−07−10 07:32:11 Etc/GMT

About.com Interior Decorating...

[2003−07−10 00:32:11 PDT] <main> Importing [RSSFeed 7f7fe] 2003−07−10 07:32:12 Etc/GMT

About.com Landscaping...

[2003−07−10 00:32:13 PDT] <main> Importing [RSSFeed 557211] 2003−07−10 07:32:13 Etc/GMT

About.com Publishing...

[2003−07−10 00:32:16 PDT] <main> Importing [RSSFeed 7fa3f6] 2003−07−10 07:32:16 Etc/GMT

About.com Roses...

[2003−07−10 00:32:16 PDT] <main> Importing [RSSFeed 1167f3] 2003−07−10 07:32:17 Etc/GMT

About.com Woodworking...

[2003−07−10 00:32:18 PDT] <main> Importing [RSSFeed d9edbe] 2003−07−10 07:32:18 Etc/GMT

Absolute Quake Files Archive...

Importing feeds

Developing Applications with WireHose (Mac OS X) 60

Browsing feeds

Now that you've imported some feeds, it's time to view them in the web browser. The ability

to browse through tags and view available resources is built into WireHose.

Choose Edit Active Executable 'HelloWorld' from the Project menu.1.

Uncheck the Use column for the −ImportFeeds YES argument so feeds won't be

imported.

2.

Launch the application, and open this URL in your browser:

http://127.0.0.1:2020/cgi−bin/WebObjects/HelloWorld.woa/wa/Drill

3.

Browse through the available categories to see the feeds.

The Drill direct action, defined in the WireHoseLayoutSupport framework, acts as a

cover for the WHTagDrillerPage component. A tag driller page renders the current

tag and its child tags, and displays the resources tagged with the current tag. Each tag

is rendered as a hypertext link to the Drill direct action with its path.

4.

Importing feeds

Developing Applications with WireHose (Mac OS X) 61

http://127.0.0.1:2020/cgi-bin/WebObjects/HelloWorld.woa/wa/Drill

Importing feeds

Developing Applications with WireHose (Mac OS X) 62

Crawling feeds

Importing RSS items into the database is similar to importing feeds, except that as an

aggregator, Hello World will need to crawl the feeds periodically to fetch any updated items.

The crawler will ignore any feeds which had problems the last time they were fetched. It will

also tag each item as it is fetched so users can browse through items by category.

Fetching feeds to crawl

First, a method which fetches the set of feeds to crawl.

Add this method to Importer.java:

static NSArray fetchFeedsToCrawl(EOEditingContext ec) {

 NSMutableArray qualifiers = new NSMutableArray();

 // fetch all feeds that haven't been fetched in the last hour

 qualifiers.addObject(new EOKeyValueQualifier(

 "lastFetchDate",

 EOQualifier.QualifierOperatorLessThan,

 new NSTimestamp().timestampByAddingGregorianUnits(0, 0, 0, −1, 0, 0)));

 // and all feeds which weren't invalid last time we fetched

 qualifiers.addObject(

 WHEnterpriseObject.qualifierForBooleanAttribute(ec,

 "RSSFeed", "lastFetchInvalid", EOQualifier.QualifierOperatorEqual, false));

 EOQualifier q = new EOAndQualifier(qualifiers);

 EOFetchSpecification fs = new EOFetchSpecification("RSSFeed", q, null);

 return ec.objectsWithFetchSpecification(fs);

}

Note: The qualifierForBooleanAttribute method constructs a qualifier to match

boolean values in a database independent fashion. It works by inspecting the current definition of

the boolean attribute to determine whether to use a Boolean, String or Integer to represent true or

false. Note that here we are using "lastFetchInvalid", which is what the attribute is called in the

model. When setting or getting a boolean value on the feed, you'll use the

setLastFetchWasInvalid and lastFetchWasInvalid methods defined earlier.

1.

Developing Applications with WireHose (Mac OS X) 63

Crawling feeds

The next step is to write the crawler. This method is similar to the importFeeds method,

except that it will call fetchDictionaryFromURL and insertResources repeatedly,

once for each available feed. It will also assign tags to the items in the feed based on the

feed's tags.

Add this method to Importer.java:

public static void crawlFeeds() {

 EOEditingContext ec = new EOEditingContext();

 ec.lock();

 NSArray feeds = fetchFeedsToCrawl(ec);

 NSLog.debug.appendln("Found "+feeds.count()+" to crawl...");

 RSSFeed feed;

 NSMutableDictionary rss;

 NSMutableArray snapshots;

 NSDictionary statusDict;

 NSArray inserted;

 // iterate through feeds and fetch items from each one

 for (int i=0, count=feeds.count(); i<count; i++) {

 feed = (RSSFeed)feeds.objectAtIndex(i);

 NSLog.debug.appendln("Crawling "+feed.name()+": "+feed.link());

 try {

 // import the dictionary from the feed's URL

 rss = WHImporter.fetchDictionaryFromURL(

 feed.link(), "Contents/Resources/rss20MappingModel.xml");

 // extract and clean up the dictionaries

 snapshots = cleanSnapshots(rss.valueForKeyPath("channel.items"));

 // insert the resources into the database

 // insertResources returns a dictionary of

 // inserted, updated, deleted items

 statusDict = WHImporter.insertResources(ec,

 snapshots, "RSSItem", "Content/", null,

1.

Crawling feeds

Developing Applications with WireHose (Mac OS X) 64

 WHImporter.IgnoreAndTag,

 true, true, true, true, false);

 // get inserted items from the returned dictionary

 inserted = (NSArray)statusDict.objectForKey(WHImporter.InsertedKey);

 // add tags to the inserted items based on the feed's tags

 tagItemsForFeed(ec, inserted, feed);

 // don't fetch for another hour

 feed.setLastFetchDate(new NSTimestamp());

 ec.saveChanges();

 } catch (Exception e) {

 NSLog.debug.appendln("Exception importing "+feed.link()+" − "+e);

 feed.setLastFetchWasInvalid(true);

 }

 }

 ec.unlock();

 ec.dispose();

}

The insertResources method returns a status dictionary which contains arrays

of updated, inserted, removed and ignored objects. The importFeeds method

ignored this return value, but here the list of inserted items are extracted from the

dictionary so they can be tagged.

Tagging items

In addition to using whatever categories were specified for an item in its RSS feed, the Hello

World crawler will also assign tags based on the feed's categories.

Add this method to Importer.java:

static void tagItemsForFeed(EOEditingContext ec, NSArray items, RSSFeed feed) {

 // use this to get a tagpath without "Feeds/" at the beginning

 // for example, "Consumer/Gardening" instead of "Feeds/Consumer/Gardening"

 WHTag feedAncestor = WHTag.tagForPath(ec, "Feeds", false);

 NSMutableArray tags = new NSMutableArray();

1.

Crawling feeds

Developing Applications with WireHose (Mac OS X) 65

 String path;

 WHTag tag;

 // iterate through the feed's tags

 // and build an array of tags to assign to items

 for (int i=0, count=feed.tags().count(); i<count; i++) {

 tag = (WHTag)feed.tags().objectAtIndex(i);

 // get a tagpath that starts with "Content/" instead of "Feeds/"

 // e.g., "Content/Consumer/Gardening"

 path = "Content/"+tag.tagPath(feedAncestor, "/");

 // add a tag for that path

 tags.addObject(WHTag.tagForPath(ec, path, true));

 // and add a tag for that path, plus the feed's name

 // e.g., "Consumer/Gardening/About.com Botany"

 tags.addObject(WHTag.tagForPath(ec, path+"/"+feed.name(), true));

 }

 RSSItem item;

 // iterate through items

 for (int i=0, count=items.count(); i<count; i++) {

 item = (RSSItem)items.objectAtIndex(i);

 // associate the item with the feed

 item.addObjectToBothSidesOfRelationshipWithKey(feed, "feed");

 // and add tags to the item

 WHTag.addTags(item, tags);

 }

}

Crawling feeds

Developing Applications with WireHose (Mac OS X) 66

Running the import

Next, you'll add another system property to control whether or not feeds get crawled at

runtime. Then it's time to test the crawler.

Add these lines to theinitialize method in Application.java:

if (NSPropertyListSerialization.booleanForString(

 System.getProperty("CrawlFeeds"))) {

 Importer.crawlFeeds();

}

Add these lines to the Properties file:

controls whether feeds are crawled at runtime

CrawlFeeds = NO

1.

Choose Edit Active Executable 'HelloWorld' from the Project menu.2.

Click the + icon under Launch Arguments to add this argument, and check the Use

column:

−CrawlFeeds YES

3.

Now build and launch Hello World, and watch as the feeds are crawled. You don't need to

crawl all the feeds for this example, so you can stop the application once a few have been

imported. The output should look something like this:

Crawling feeds

Developing Applications with WireHose (Mac OS X) 67

Reading MacOSClassPath.txt ...

Launching HelloWorld.woa ...

java −XX:NewSize=2m −Xmx64m −Xms32m −DWORootDirectory="/System" −DWOLocalRootDirectory=""

−DWOUserDirectory="/Users/garyt/Library/BuildProducts" −DWOEnvClassPath=""

−DWOApplicationClass=Application −DWOPlatform=MacOS −Dcom.webobjects.pid=6807 −classpath

WOBootstrap.jar com.webobjects._bootstrap.WOBootstrap −WODebuggingEnabled NO −NSDebugGroups

"(com.wirehose.base.WHLog.DebugGroupImporting, com.wirehose.base.WHLog.DebugGroupWireHose)"

−NSDebugLevel NSLog.DebugLevelCritical −CrawlFeeds YES

appRoot is /Users/garyt/Library/BuildProducts/HelloWorld.woa/Contents

Loading /Users/garyt/Library/BuildProducts/HelloWorld.woa/Contents/MacOS/MacOSClassPath.txt

Generated classpath:

 /Users/garyt/Library/BuildProducts/HelloWorld.woa/Contents/Resources/Java/HelloWorld.jar

 /System/Library/Frameworks/JavaFoundation.framework/Resources/Java/javafoundation.jar

 /System/Library/Frameworks/JavaEOControl.framework/Resources/Java/javaeocontrol.jar

 /System/Library/Frameworks/JavaEOAccess.framework/Resources/Java/javaeoaccess.jar

 /System/Library/Frameworks/JavaWebObjects.framework/Resources/Java/javawebobjects.jar

 /System/Library/Frameworks/JavaJDBCAdaptor.framework/Resources/Java/javajdbcadaptor.jar

 /System/Library/Frameworks/JavaWOExtensions.framework/Resources/Java/JavaWOExtensions.jar

 /System/Library/Frameworks/JavaXML.framework/Resources/Java/javaxml.jar

 /Library/Frameworks/WireHoseBase.framework/Resources/Java/WireHoseBase.jar

 /Library/Frameworks/WireHoseLayoutSupport.framework/Resources/Java/WireHoseLayoutSupport.jar

 /Library/Frameworks/WireHoseWOBuilderBindings.framework/

 /Library/Frameworks/WHOpenBasePrototypes.framework/

 /Library/Frameworks/OpenBasePKPlugIn.framework/Resources/Java/OpenBasePKPlugIn.jar

 /Users/garyt/Library/Java/

Crawling feeds

Developing Applications with WireHose (Mac OS X) 68

 /Library/Java/

 /System/Library/Java/

 /Network/Library/Java

 /Library/WebObjects/Extensions/activation.jar

 /Library/WebObjects/Extensions/avalon−framework−4.1.2.jar

 /Library/WebObjects/Extensions/axis−ant.jar

 /Library/WebObjects/Extensions/axis.jar

 /Library/WebObjects/Extensions/commons−discovery.jar

 /Library/WebObjects/Extensions/commons−logging.jar

 /Library/WebObjects/Extensions/jaxrpc.jar

 /Library/WebObjects/Extensions/log4j−1.2.4.jar

 /Library/WebObjects/Extensions/logkit−1.0.1.jar

 /Library/WebObjects/Extensions/mail.jar

 /Library/WebObjects/Extensions/saaj.jar

 /Library/WebObjects/Extensions/wsdl4j.jar

 /Library/WebObjects/Extensions/xmlrpc−1.1.jar

 /Library/WebObjects/Extensions/

[2003−07−10 02:50:46 PDT] <main> WireHose Server 3.0 −− The WireHose frameworks are

copyright 2000−2003 Bulldog Beach Interactive, Inc. All rights reserved. WireHose is a

trademark of Bulldog Beach Interactive, Inc.

[2003−07−10 02:50:48 PDT] <main> Created adaptor of class WODefaultAdaptor on port 2020 and

address icecube.bulldogbeach.com/192.168.0.101 with WOWorkerThread minimum of 16 and maximum

of 256

[2003−07−10 02:50:49 PDT] <main> Application project found: Will locate resources in

'/Users/garyt/Desktop/HelloWorld' rather than

Crawling feeds

Developing Applications with WireHose (Mac OS X) 69

'/Users/garyt/Library/BuildProducts/HelloWorld.woa' .

[2003−07−10 02:50:55 PDT] <main> Creating LifebeatThread now with: HelloWorld 2020

icecube.bulldogbeach.com/192.168.0.101 1085 30000

[2003−07−10 02:50:55 PDT] <main> Welcome to HelloWorld, another top−quality application

using the WireHose frameworks from Bulldog Beach Interactive. The WireHose frameworks are

Copyright 2000−2003 Bulldog Beach Interactive, Inc. All rights reserved. WireHose is a

trademark of Bulldog Beach Interactive, Inc.

[2003−07−10 02:50:55 PDT] <main> The WireHose−specific defaults are:

 WHAdaptorDict = adaptorDict.plist

 WHComponentsWithContentAreStateless = YES

 WHCookieDomain = default

 WHCookiePath = /

 WHDefaultAffiliate = default

 WHDefaultLayout = Default

 WHDefaultTagEntity = WHTag

 WHDisableAutoSubEntities = YES

 WHDisableGuestPreloading = NO

 WHDisableLayoutDictionaryCaching = YES

 WHDisableSharedObjectLoading = YES

 WHHeaderDebugEnabled = NO

 WHIgnoreMissingEntities = YES

 WHLayoutDict = layoutDict.plist

 WHLookupDictionaryDebugEnabled = NO

 WHRewriteSessionCookiePath = YES

 WHSQLExceptOperator = EXCEPT

Crawling feeds

Developing Applications with WireHose (Mac OS X) 70

 WHSQLIntersectOperator = NO

 WHSQLTimestampFormat = default

 WHServerName = 127.0.0.1:2020

 WHServerNameHeaderKeys = ("x−webobjects−server−name", "SERVER_NAME", "WHServerName")

 WHStopWordsList = stopwords.txt

 WHTagCacheSize = 1024

 WHUseEntityHints = YES

 WHUserAgentHeaderKeys = ("HTTP_USER_AGENT", "user−agent")

 WHUserEntityName = WHUser

[2003−07−10 02:50:56 PDT] <main> WHDisableSharedObjectLoading=YES, disabled shared object

loading

[2003−07−10 02:50:58 PDT] <main> EOModel 'RSSFeed' loaded... Connection dictionary replaced.

[2003−07−10 02:50:58 PDT] <main> EOModel 'RSSItem' loaded... Connection dictionary replaced.

[2003−07−10 02:50:58 PDT] <main> EOModel 'WireHoseBase' loaded... Connection dictionary

replaced, URL was 'jdbc:FrontBase://localhost/wirehose/user=wirehose', is now:

'jdbc:openbase://127.0.0.1/HelloWorld'.

[2003−07−10 02:50:58 PDT] <main> EOModel 'WHOpenBasePrototypes' loaded... Didn't find

WHShouldReplaceAdaptorDictionary=YES in userInfo, will not replace adaptor dictionary.

[2003−07−10 02:51:09 PDT] <main> Found 713 to crawl...

[2003−07−10 02:51:09 PDT] <main> Crawling About.com Botany:

http://www.growinglifestyle.com/h117/index.rss

[2003−07−10 02:51:57 PDT] <main> Importing [RSSItem 48854d] 2003−07−10 09:51:57 Etc/GMT

Concrete Countertops: Design, Form, and Finishes for the

[2003−07−10 02:52:00 PDT] <main> WireHose frameworks: Found valid license key. Unlimited

transactions per minute. Non−expiring.

Crawling feeds

Developing Applications with WireHose (Mac OS X) 71

[2003−07−10 02:52:02 PDT] <main> Crawling About.com Home Repair:

http://www.growinglifestyle.com/h108/index.rss

[2003−07−10 02:52:04 PDT] <main> Importing [RSSItem ab5e0b] 2003−07−10 09:52:04 Etc/GMT

Mosquito Trap, 3/4 Acre Mosquito Catcher...

[2003−07−10 02:52:07 PDT] <main> Crawling About.com Interactive Fiction:

http://interactfiction.about.com/library/news/ifnews.rss

[Fatal Error] :34:12: Open quote is expected for attribute "NAME".

[2003−07−10 02:52:09 PDT] <main> WHImporter.fetchSnapshotsFromURL() − Error decoding root

dictionary: Open quote is expected for attribute "NAME".

[2003−07−10 02:52:09 PDT] <main> Exception importing

http://interactfiction.about.com/library/news/ifnews.rss − :

com.webobjects.appserver.xml.WOXMLException [org.xml.sax.SAXParseException] Open quote is

expected for attribute "NAME".

[2003−07−10 02:52:09 PDT] <main> Crawling About.com Interior Decorating:

http://www.growinglifestyle.com/h113/index.rss

[2003−07−10 02:52:11 PDT] <main> Importing [RSSItem 24b943] 2003−07−10 09:52:11 Etc/GMT

Brill Luxus 38 Reel Push Manual Mower...

[2003−07−10 02:52:13 PDT] <main> Crawling About.com Landscaping:

http://www.growinglifestyle.com/h110/index.rss

[2003−07−10 02:52:15 PDT] <main> Importing [RSSItem daa156] 2003−07−10 09:52:15 Etc/GMT

Concrete Countertops: Design, Form, and Finishes for the

[2003−07−10 02:52:15 PDT] <main> [Adding tags to 1...]

[2003−07−10 02:52:15 PDT] <main> Crawling About.com Roses:

http://www.growinglifestyle.com/h101/index.rss

[2003−07−10 02:52:16 PDT] <main> Importing [RSSItem 82fd0f] 2003−07−10 09:52:16 Etc/GMT

Crawling feeds

Developing Applications with WireHose (Mac OS X) 72

Plants of the Metroplex...

[2003−07−10 02:52:19 PDT] <main> Crawling Advogato: http://www.advogato.org/rss/articles.xml

[2003−07−10 02:52:20 PDT] <main> Importing [RSSItem 8dea20] 2003−07−10 09:52:20 Etc/GMT

White Box Vs Black Box Voting Systems...

[2003−07−10 02:52:20 PDT] <main> Importing [RSSItem 30b6a4] 2003−07−10 09:52:21 Etc/GMT Open

Advogato?...

[2003−07−10 02:52:22 PDT] <main> Importing [RSSItem d6ea02] 2003−07−10 09:52:22 Etc/GMT

Which License for Free Documentation?...

[2003−07−10 02:52:22 PDT] <main> Importing [RSSItem c1902d] 2003−07−10 09:52:23 Etc/GMT

Forking the good fork...

[2003−07−10 02:52:24 PDT] <main> Importing [RSSItem 7fa3f6] 2003−07−10 09:52:24 Etc/GMT Open

Investment...

[2003−07−10 02:52:24 PDT] <main> Importing [RSSItem c8092a] 2003−07−10 09:52:25 Etc/GMT

CounterfeitProof...

[2003−07−10 02:52:26 PDT] <main> Importing [RSSItem 4d75ae] 2003−07−10 09:52:26 Etc/GMT Open

source software and ethics...

[2003−07−10 02:52:26 PDT] <main> Importing [RSSItem 76358a] 2003−07−10 09:52:27 Etc/GMT

UKUUG Linux 2003 conference: Early Bird registration until end June...

[2003−07−10 02:52:28 PDT] <main> Importing [RSSItem c126b3] 2003−07−10 09:52:28 Etc/GMT Nine

days before Software Patent in Europe....

[2003−07−10 02:52:30 PDT] <main> Importing [RSSItem a04cf8] 2003−07−10 09:52:30 Etc/GMT How

should we encourage donations for software?...

[2003−07−10 02:52:31 PDT] <main> Crawling Aerospace and Defense Industry News:

http://www.moreover.com/cgi−local/page?o=rss&c=Aerospace%20and%20defense%20industry%20news

[2003−07−10 02:52:34 PDT] <main> Importing [RSSItem 4651f2] 2003−07−10 09:52:34 Etc/GMT Farm

Crawling feeds

Developing Applications with WireHose (Mac OS X) 73

machine helps Boeing production...

Crawling feeds

Developing Applications with WireHose (Mac OS X) 74

Importing in a separate thread

Since crawling the feeds should happen repeatedly while the application is running −− and we

don't want to delay application startup while the feeds are crawled −− the feed crawler should

run in its own thread.

Add this method to Importer.java:

public static void crawlFeedsInThread() {

 Thread crawler = new Thread() {

 public void run() {

 try {

 sleep(1000 * 15); // wait 15 secs before first crawl

 while (true) {

 crawlFeeds();

 sleep(1000 * 60 * 5); // crawl every 5 minutes

 }

 } catch (InterruptedException e) {

 System.out.println("crawler: "+e);

 }

 }

 };

 crawler.start();

}

1.

And change this line in Application.java:

Importer.crawlFeeds();

to this:

Importer.crawlFeedsInThread();

2.

Now, when you launch Hello World, application startup isn't delayed, and the application will

check every five minutes for feeds which haven't been crawled in the last hour to fetch.

Note: Since EOF is not by default multithreaded, this technique will still lock the EOF stack for each fetch

Crawling feeds

Developing Applications with WireHose (Mac OS X) 75

or commit by the importer to the database. For maximum multithreadedness, you can create a new EOF

stack for the importer. To do this, you create a new object store coordinator for the importer, and use it as

the root object store for the importer's editing contexts.

Add this line to Importer.java:

static EOObjectStoreCoordinator objStoreCoord = new

EOObjectStoreCoordinator();

1.

And change all EOEditingContext constructors in Importer.java from this:

new EOEditingContext()

to this:

new EOEditingContext(objStoreCoord)

2.

WireHose posts a ShouldInvalidateCache notification when new items are tagged, so objects in

other EOF stacks can keep their caches up to date. See the reference documentation for WHFetcher,

WHCachingDataSource, WHTagFetcher and WHTagDataSource for details. If you are deploying multiple

instances of your application, you can listen for this notification and propagate it to the other instances to

ensure that all the instances stay up to date.

Browsing items

If you open this URL in your browser,

http://127.0.0.1:2020/cgi−bin/WebObjects/HelloWorld.woa/wa/Drill

you can browse the items which have been imported.

Crawling feeds

Developing Applications with WireHose (Mac OS X) 76

http://127.0.0.1:2020/cgi-bin/WebObjects/HelloWorld.woa/wa/Drill

Each resource is rendered using the default WHShowResource component. In the next section

you'll learn how to build a custom renderer component for RSSItem objects, and enable your

component in the layout dictionary.

Customizing how items are shown

Since WireHose is an object−oriented system, with a strong emphasis on code reuse, there is

a clean separation between business logic and presentation components. For maximum

flexibility, WireHose allows you to use any component to render or edit an object on a page.

Special components called "switchers" keep WireHose updated as to which object is currently

being rendered or edited.

Select the Web Components group in the Files pane.1.

Choose New File... from the File menu. Scroll down to the WireHose Resource

Renderer template and click Next.

2.

Name it ShowRSSItem, add it to the Application Server target in the Hello World

project, and click Finish.

3.

Add this method to ShowRSSItem.java:

public RSSItem item() {

 return (RSSItem)object();

}

4.

Crawling feeds

Developing Applications with WireHose (Mac OS X) 77

Note: This method isn't strictly required; it's a convenience so that WebObjects Builder will

display the bindings available for RSSItem objects. You can bind values such as the item's name

to either object.name or item.name.

Open ShowRSSItem.wo in WebObjects Builder.5.

Delete the paragraph and insert a new one. Inside it, insert a WOHyperlink, and bind

its href to item.link

6.

Inside the link, insert a WOString. Bind its value to item.name7.

Insert a couple dashes, and another WOString. Bind its value to

item.textDescription

Note: Since "title" is an optional attribute in an RSS item, you may want to use WOConditional

components to render the link differently depending on whether or not the item has a name.

8.

Since it's traditional in an aggregator to indicate where an item originated, you can add a link

Crawling feeds

Developing Applications with WireHose (Mac OS X) 78

to the item's feed. This link will use the WireHose "Display" direct action, which acts as a

cover for the WHShowObjectPage component. The Display direct action takes one

parameter, "resource", set to the global ID of the object to be displayed. WHEnterpriseObject

provides utility methods to encode and decode globalIDs as compact strings suitable for this

purpose.

Add this method to RSSItem.java:

public String feedGlobalID() {

 return WHEnterpriseObject.encodedGlobalIDForObject(feed());

}

1.

In WebObjects Builder, after the description, insert a pair of parentheses, and

between them, insert a WOHyperlink. Bind its actionClass to "Display", and add a

binding called ?resource set to item.feedGlobalID.

2.

Inside the WOHyperlink, add a WOString with its value set to item.feed.name3.

The final step is to modify the layout dictionary to tell the WHSwitchRenderer components to

use ShowRSSItem instead of WHShowResource.

Crawling feeds

Developing Applications with WireHose (Mac OS X) 79

Select layoutDict.plist in the Resources group in Project Builder.1.

Find this section:

renderers = {

 WHChannel = WHShowChannel;

 WHComponentChannel = WHShowComponentChannel;

 WHFetcher = WHShowFetcher;

 WHResource = WHShowResource;

};

2.

Change it so it reads:

renderers = {

 WHChannel = WHShowChannel;

 WHComponentChannel = WHShowComponentChannel;

 WHFetcher = WHShowFetcher;

 WHResource = WHShowResource;

RSSItem = ShowRSSItem;

};

3.

Build and launch the application, and open this URL in your browser:

http://127.0.0.1:2020/cgi−bin/WebObjects/HelloWorld.woa/wa/Drill

You'll see your new component is being used to display items.

4.

Crawling feeds

Developing Applications with WireHose (Mac OS X) 80

http://127.0.0.1:2020/cgi-bin/WebObjects/HelloWorld.woa/wa/Drill

Note: Since there is a to−many relationship between RSSFeed and RSSItem, you could build a

ShowRSSFeed component, and include an option to show the individual items for a feed.

To do this, you would embed a WHSwitchRenderer component inside a WORepetition which iterates over

the feed's items, and set the switcher's object binding to the item. WireHose will automatically include

the proper renderer component to show an item.

At this point the business logic for Hello World is complete. RSS feeds and items are

modeled and being imported into the database. The next step will be to customize Hello

World's user interface so users can search items, login and create personalized topics for their

page.

Crawling feeds

Developing Applications with WireHose (Mac OS X) 81

WireHose layout concepts

All WireHose web components, pages and direct actions are defined in the

WireHoseLayoutSupport framework, which also contains application and session−level logic.

This framework is only required for WireHose web applications; you can build

command−line tools which manipulate resources and tags using just the WireHoseBase

framework.

All WireHose application−level logic is accessed via static methods on the

WHApplicationHelper class, and all session−level logic is contained in instances of

WHSessionHelper.

Note: WireHose is designed so that you can add its frameworks to an existing WebObjects project without

having to subclass its application or session classes. WireHose−specific WOApplication and WOSession

subclasses are provided, but their use is optional. See the reference documentation for information about

adding WireHose support to existing WebObjects classes.

The application helper

WHApplicationHelper is a class that handles application−level WireHose functionality. All

its methods are static, so you never instantiate or subclass it. Its primary responsibilities are

providing access to system properties, initializing WireHose data structures, providing access

to the application's layout dictionary, and handling access control. During startup, the

application helper also controls whether and how WireHose will modify EOModels by

automatically creating subentities for particular entities.See "Multiple affiliates and auto

subentities" for more information about this feature.

Developing Applications with WireHose (Mac OS X) 82

Application startup

In response to WOApplication's ApplicationWillFinishLaunching notification, the

application helper performs a number of initialization tasks. These include getting system

properties, setting default values, and logging the values of WireHose−specific properties.

Once it has completed initialization, WHApplicationHelper posts an

ApplicationHelperDidFinishInitializing notification to declare that it's now

safe to access WireHose objects. This is the notification Hello World's Application.java

listens for before importing and crawling feeds.

Customizing WHApplicationHelper

WHApplicationHelper provides a delegate interface so you can customize its behavior. It

defines several methods which you can use to customize how users are logged in, how guest

users get created, and whether or not a user can view, edit or delete objects.

Typically you'll set your application class as WHApplicationHelper's delegate, but any object

can be a delegate. You don't need to implement all the methods in the interface or declare that

your object implements the interface; WHApplicationHelper will only call the delegate

methods you implement.

Customizing authentication

You can override how WireHose associates a user with a session by implementing a delegate

method called userFromRequest. You can inspect whatever formvalues, cookies or

headers you find in the request to determine the user to return. You can also control how

guest users are created or fetched through the guestUserForAffiliate method.

WireHose layout concepts

Developing Applications with WireHose (Mac OS X) 83

Customizing access control

The various WireHose layout components, pages and direct actions will query

WHApplicationHelper to determine if a user is allowed to view, edit or delete objects. You

can implement the userCanViewObject, userCanEditObject and

userCanDeleteObject delegate methods to override the default behavior. The

filteredUserViewableObjects is also available so you can quickly filter entire

arrays rather than single objects. Note that these methods will be called often, so they should

have as little overhead as possible.

The session helper

Each session in a WireHose application has an associated WHSessionHelper instance, which

handles session−specific WireHose properties. It is a "helper" class so you don't have to

subclass WHSession to access WireHose features.

The session helper maintains knowledge of the current user and the object currently being

edited. It also holds the current WireHose page rendering context, including the current layout

and how to render particular items in various areas of assorted pages within the available

layouts. WHSessionHelper also handles localization, browser sniffing, login cookie

generation and the user's current search string.

Accessing the session helper

The session helper is stored in the session's dictionary. WHComponent, WHSession and

WHDirectAction provide access to the session helper via the helper() method. You

can access the session helper in your own classes by implementing the following method:

public WHSessionHelper helper() {

 WHSessionHelper helper = (WHSessionHelper)session().objectForKey(

 WHApplicationHelper.SessionHelperKey);

 if (helper == null) {

 helper = new WHSessionHelper(session());

 session().setObjectForKey(helper,

 WHApplicationHelper.SessionHelperKey);

 }

 return helper;

WireHose layout concepts

Developing Applications with WireHose (Mac OS X) 84

 }

WireHose user interface concepts

Like all WebObjects web applications, a WireHose application consists of pages and

components. The WireHoseLayoutSupport framework provides a very dynamic, flexible

system for controlling your application's appearance and behavior.

To achieve this flexibility, WireHose introduces the concepts of layouts, pages, wrappers and

areas. These are defined in a configuration file known as the application's layout dictionary.

Layouts

WireHose provides the ability for your application to have multiple user interface

appearances (also known as being "skinnable"). Each separate look in a WireHose application

is called a layout.

A WireHose application can support multiple branded affiliates from a single codebase, as in

an application service provider environment. Or it can allow the user to personalize the look

of their page in addition to personalizing its content. You can also use this ability to support

multiple output formats, such as XML, HDML, SMIL, RSS, RDF, etc.

You can substitute pages and components for a given layout; the session helper uses the

layout dictionary to determine which components to use for each layout.

Pages

Each page is identified by its canonical name, which is typically the name of a page's

superclass. For example, the canonical name for a search results page is

"WHSearchResultsPage". You can provide a subclass of WHSearchResultsPage, such as

"MySearchResultsPage", and with an appropriate entry in the layout dictionary, have it be

used only when a particular layout is active.

WireHose layout concepts

Developing Applications with WireHose (Mac OS X) 85

Wrappers

Each layout has an associated wrapper, which defines the look for that layout. A wrapper

component will include the enclosing <HTML><BODY>...</BODY></HTML> tags, and

provides a WOComponentContent in which pages are rendered. WireHose page components

therefore do not usually contain these tags; rather, they use a WOSwitchComponent to switch

in the appropriate wrapper for the current layout via a helper.currentWrapper

binding. This allows a page component to be used in multiple layouts.

Areas

Wrappers and pages also may define multiple areas. For example, a three−column layout

may define three areas, "left", "middle" and "right", while another layout may include only a

"main" area. Each of a user's channels are mapped to a particular area through its areaName

property.

The layout dictionary

WHApplicationHelper provides access to the current layout dictionary in its

layoutDictionary method. The location of the layout dictionary can be specified via the

WHLayoutDict property, or you can call setLayoutDictionary to provide one

programmatically in response to the

ApplicationHelperWillFinishInitializing notification.

Usually you won't access the layout dictionary directly. Rather, the session helper looks up

values in the layout dictionary for you to resolve component bindings and values.

WireHose layout concepts

Developing Applications with WireHose (Mac OS X) 86

What's specified by the layout dictionary

The layout dictionary is used to control which components are switched in for each area, page

and layout. It has a very flexible structure: you can define entries which apply to all areas in a

layout, all pages in a layout, an area in all layouts, a page in all layouts, an area in a page in a

layout, etc.

Components that inherit from WHComponent often resolve their bindings through the layout

dictionary rather than being set directly by a parent component. A component's color

binding can resolve to "blue" in one area, and "green" in another, depending on the current

area, page and layout.

The current layout

By default, WireHose will use the value of the user's currentLayout property to

determine which layout to use. You can override this by calling setCurrentLayout.

WHSessionHelper can also automatically determine which layout to use by sniffing HTTP

request headers during its constructor. This is useful for temporarily overriding the user's

layout preference depending on the device they are currently using to access the application.

Rapid turnaround

During development, you can disable caching the layout dictionary through the

WHDisableLayoutDictionaryCaching property. If this property is true,

WHApplication will force the layout dictionary to be reloaded before each incoming request

is handled. This allows you to make changes in the layout dictionary and see them

immediately without re−launching your application.

WireHose layout concepts

Developing Applications with WireHose (Mac OS X) 87

Using the layout dictionary

WHSessionHelper provides your primary access to the layout dictionary. To resolve bindings

such as helper.@itemInArea.someKey, the session helper will look in the dictionary

at the most specific place possible to resolve the value for someKey in the current

component. For itemInArea, that is the current area, in the current page, in the current

layout. If a value isn't found at that location in the dictionary, WHSessionHelper will look at

the next most specific place, and so on, until it finds a value. It then caches the value at the

original place it looked so the value is immediately available the next time it is needed.

How WireHose resolves layout dictionary values

Here's the order in which WHSessionHelper attempts to resolve values in the layout

dictionary for area−level bindings:

Area in current page1.

Area in current wrapper2.

Current page3.

Current wrapper4.

Area in default page5.

Area in default wrapper6.

Default page7.

Default wrapper8.

To resolve page−level bindings, the session helper starts at the current page, and skips the

area−level bindings:

Current page1.

Current wrapper2.

Default page3.

Default wrapper4.

WireHose layout concepts

Developing Applications with WireHose (Mac OS X) 88

Layout dictionary structure

The layout dictionary consists of a nested hierarchy of dictionaries, arrays and constant

values:

 {

defaults = {

wrapper = {

areas = {

areaName = {

componentName = {

 ...

pages = {

pageName = {

areaName = {

componentName = {

 ...

 };

layouts = {

layoutName = {

wrapper = {

areas = {

areaName = {

componentName = {

 ...

pages = {

pageName = {

areaName = {

componentName = {

 ...

}

See the WHSessionHelper documentation for methods such as itemInArea(String)

and itemInPage(String) for the specific keypaths checked while resolving items.

WireHose layout concepts

Developing Applications with WireHose (Mac OS X) 89

Editors and renderers

Earlier in this tutorial, you built custom renderers for RSS items and feeds. You added a

couple lines to the layout dictionary so WireHose would know to use your renderer instead of

the default WHShowResource component. This section describes a few more details about

that mechanism.

A common action when rendering a WireHose page is to iterate over a list of objects, and

select the appropriate renderer for that object. for example, WHTagDrillerPage iterates over a

list of resources which have been tagged with the current tag. For each resource, it uses a

WHSwitchRenderer to determine which component to use to render it.

Switchers keep the session helper updated as to which object is currently being rendered or

edited. The currentRenderer() and currentEditor() methods look up an

area−level dictionary called "renderers" or "editors" to determine which component to use.

Here's a sample:

pages = {

 MyPage = {

 someArea = {

renderers = {

 MyPicture = ShowMyPicture;

 Customer = ShowCustomer;

 };

editors = {

 MyPicture = EditMyPicture;

 Customer = WHBlank; // don't allow editing

 };

If it doesn't find an entry for a particular entity, the session helper will look for an entry for

each of the current entity's parent entities until it finds a match, so you can have

entity−specific renderers as shown in the example.

Note: You can provide your own custom WHSwitchRenderer subclass to enable special behavior or

appearance. See the reference documentation for details.

WireHose layout concepts

Developing Applications with WireHose (Mac OS X) 90

Customizing the user interface

WireHose features a very flexible approach to customizing your application's user interface.

The "layout dictionary" defines one or more layouts for an application, and includes entries

which determine how component bindings should be resolved for the various areas of each

page within a particular layout.

You've already created components to display feeds and items properly, and modified the

layout dictionary so your components are used instead of the defaults. In this section, you'll

add a search box, and customize how resources can be browsed and searched.

Making the main page

The first customization you'll make to the Hello World user interface will be to allow users to

browse available content from the main page. To do this, you'll embed a WHTagDriller

component, similar to how a WHTagDrillerPage does. This tagdriller will be limited to

showing only items under the "Content" tag.

Open MainPage.wo in WebObjects Builder.1.

Delete the innermost WOSwitchComponent.2.

Choose Custom WebObject from the WebObjects menu.3.

For "WebObjects class to use:" type WHTagDriller, and click OK.4.

Developing Applications with WireHose (Mac OS X) 91

Set its tagPath to "Content" and showTagPath to false.5.

Launch the Hello World application if necessary. As long as rapid turnaround is

enabled, you won't need to rebuild it to see your changes.

6.

Open this URL in your browser:

http://127.0.0.1:2020/

Your browser will be redirected to the MyHomePage direct action, which displays

7.

Customizing the user interface

Developing Applications with WireHose (Mac OS X) 92

http://127.0.0.1:2020/

the current WHMainPage component. This entry in the layout dictionary causes your

MainPage component to be used instead of the default WHMainPage:

defaults = {

 ...

 wrapper = {

 ...

 };

 pages = {

 ...

 WHMainPage = {

pageName = MainPage;

Adding keyword searching

Next, you'll add a search box so users can search items and feeds by keywords. The search

box will be added to the Wrapper component so it will be available on all pages by default.

Adding the search box

Open Wrapper.wo in WebObjects Builder.1.

Choose Custom WebObject from the WebObjects menu.2.

For "WebObjects class to use:" type WHSearchBox, and click OK.3.

Customizing the user interface

Developing Applications with WireHose (Mac OS X) 93

Reload the page in your browser.4.

Customizing the search prompt

The default prompt for WHSearchBox isn't suitable for Hello World, so next you'll change it.

WireHose has extensive localization support which allows you to control at a very fine level

how strings are localized for particular components, languages, pages and areas. You can also

define non−localized strings in the layout dictionary, which is the approach we'll take here.

Note: See the WHSessionHelper reference documentation for details about WireHose localization support.

WHSearchBox defines three strings, called "search", "prompt" and "orClickToBrowse".

Customizing the user interface

Developing Applications with WireHose (Mac OS X) 94

You'll override just the prompt string.

Find this entry in the layout dictionary:

WHSearchBox = {

 showBrowsePrompt = YES;

};

Change it so it reads:

WHSearchBox = {

 showBrowsePrompt = YES;

 strings = {

 prompt = "Search feeds: ";

 };

};

1.

Relaunch Hello World and reload the page in your browser. 2.

Customizing the user interface

Developing Applications with WireHose (Mac OS X) 95

Customizing the search box on specific pages

Since the main page and the tag driller page in Hello World already allow users to browse

through available resources, the "Or click here to browse..." link is redundant on those pages.

WHSearchBox lets you control whether this link is shown via its showBrowsePrompt

binding.

Ordinarily you'd set the showBrowsePrompt to false if you were to embed the search box

directly into the main page and tag driller page. But in this case, the search box is embedded

into the wrapper, and Hello World doesn't even have its own tag driller page component

anyway.

Another technique might be to add a method to Wrapper.java which returns true or false

depending on the current page. This method might look like this:

public boolean showBrowsePrompt() {

 return (context().page() instanceof MainPage ||

 context().page() instanceof WHTagDrillerPage);

}

or this:

public boolean showBrowsePrompt() {

 return ("WHMainPage".equals(helper().currentPage()) ||

 "WHTagDrillerPage".equals(helper().currentPage());

}

However, this approach can be cumbersome to maintain. WireHose provides an alternative

approach, which has the advantage of not requiring custom code: resolving the binding

through the layout dictionary.

This entry in the layout dictionary sets WHSearchBox's showBrowsePrompt to true in all

areas on all pages in all layouts by default:

defaults = {

 ...

 WHSearchBox = {

 showBrowsePrompt = YES;

Customizing the user interface

Developing Applications with WireHose (Mac OS X) 96

 ...

 You'll modify the layout dictionary so showBrowsePrompt resolves to false on the main page

and the tag driller page.

First, set it for the main page. Find this entry in the layout dictionary:

WHMainPage = {

 pageName = MainPage;

 ...

Change it so it reads:

WHMainPage = {

 pageName = MainPage;

WHSearchBox = {

showBrowsePrompt = NO;

};

 ...

1.

Next, set it on the tag driller page. Find this entry in the layout dictionary:

WHTagDrillerPage = {

 pageName = WHTagDrillerPage;

 ...

Change it so it reads:

WHTagDrillerPage = {

 pageName = WHTagDrillerPage;

WHSearchBox = {

showBrowsePrompt = NO;

};

 ...

2.

Reload the page in your browser.3.

Customizing the user interface

Developing Applications with WireHose (Mac OS X) 97

How this works: WHSearchBox includes a WOConditional to determine whether to show the browse

prompt. The conditional's condition is bound to showBrowsePrompt. WHSearchBox.java defines this

method:

public boolean showBrowsePrompt() {

 return booleanForBinding("showBrowsePrompt");

}

If WHSearchBox's showBrowsePrompt binding is bound directly to true or false, WHComponent's

booleanForBinding method will return that value. But if the binding is left unbound,

booleanForBinding will resolve the value via the layout dictionary.

You can use this technique in your own components. And if you're resolving simple string bindings, you

don't even have to implement a method in your code −− WHComponent will resolve the value via the layout

dictionary automatically. See the reference documentation for WHComponent for details.

Customizing the user interface

Developing Applications with WireHose (Mac OS X) 98

Removing the search box from a specific page

The WHSearchResultsPage component includes a search box by default.

This interferes with Hello World's user interface because a search box is already included

within the wrapper. In this step you'll remove the search box through another entry in the

layout dictionary.

Find this entry in the layout dictionary:

WHSearchResultsPage = {

 pageName = WHSearchResultsPage;

 showSearchBox = YES;

};

Change it so it reads:

WHSearchResultsPage = {

 pageName = WHSearchResultsPage;

showSearchBox = NO;

};

1.

Reload the page in your browser.2.

Customizing the user interface

Developing Applications with WireHose (Mac OS X) 99

How this works: Just like WHSearchBox, the WHSearchResultsPage includes a WOConditional to

determine whether to include a search box. The conditional's condition is bound to showSearchBox. Just

like WHSearchBox.java, WHSearchResultsPage.java defines this method:

public boolean showSearchBox() {

 return booleanForBinding("showSearchBox");

}

However, since page−level components are never embedded in another component, you can't set any

bindings directly. Resolving page−level bindings through the layout dictionary lets you customize page

components without writing any code.

Customizing the user interface

Developing Applications with WireHose (Mac OS X) 100

Adding personalization

In this section, you'll build a custom tag driller page, which allows guest users to click on an

"add this to my page" when they find a category they like, and receive a signup page. This

page will validate the user's login and password, and create a new user in the database. Once

the new user has been inserted into the database, you'll create a new custom fetcher which

will display items from the category the user selected.

Add this to my page

WHTagDrillerPage determines whether or not to show an "add this to my page" button by

calling WHApplicationHelper's userCanEditObject method, with the user as the object

in question. By default, the guest user isn't permitted to edit anything, so you'll override that

behavior by implementing a method from the WHApplicationHelper.Delegate interface.

Uncomment this line in Application.java's constructor:

WHApplicationHelper.setDelegate(this);

1.

Add this method:

public boolean userCanEditObject(WHUser user, Object object, WOContext context) {

 if (user.isGuest() && user.equals(object) &&

 "WHTagDrillerPage".equals(context.page().valueForKey("pageName"))) {

 return true;

 } else {

 return super.userCanEditObject(user, object, context);

 }

}

When the tag driller page checks to see if the user can edit itself,

WHApplicationHelper will call this method, and it will return true, so the button will

be displayed.

2.

Build and launch the application, then open this URL in your browser:

http://127.0.0.1:2020/

3.

When you browse to a tag which has matching resources, the "Add this to my page"4.

Developing Applications with WireHose (Mac OS X) 101

http://127.0.0.1:2020/

will appear.

In the next section, you'll build a custom subclass of WHTagDrillerPage so Hello

World can create a new user when the button is clicked.

Building TagDrillerPage

The "add this to my page" button is bound to WHTagDrillerPage's addTag method. In this

step, you'll subclass WHTagDrillerPage and override the addTag method so that it returns a

signup page if the current user is a guest.

Because the layout dictionary may specify that pages may be substituted in a particular

layout, here we'll use the session helper's nameForPage method to determine the actual

page class to return from addTag().

Select the Web Components group in the Files pane.1.

Choose New File... from the File menu. Scroll down to the WireHose Page template,

and click Next.

2.

Name it TagDrillerPage, add it to the Application Server target in the Hello World

target, and click Finish.

3.

Edit TagDrillerPage.java so it reads like this:

public class TagDrillerPage extends WHTagDrillerPage {

 public TagDrillerPage(WOContext context) {

4.

Adding personalization

Developing Applications with WireHose (Mac OS X) 102

 super(context);

 }

 public boolean shouldUseAlternateTemplate() {

 return true;

 }

 public WOActionResults addTag() {

 if (helper().user().isGuest()) {

 SignupPage nextPage =

 (SignupPage)pageWithName(helper().nameForPage("SignupPage"));

 nextPage.setTag(tag());

 return nextPage;

 } else {

 return super.addTag();

 }

 }

}

Find this entry in the layout dictionary:

WHTagDrillerPage = {

 ...

 pageName = WHTagDrillerPage;

 ...

Change it so it reads:

WHTagDrillerPage = {

 ...

pageName = TagDrillerPage;

 ...

WireHose will now use TagDrillerPage instead of WHTagDrillerPage.

5.

How this works: In this example, we're subclassing WHTagDrillerPage to modify behavior, but not

duplicating any of its HTML or .wod definitions. The page will still look just like a WHTagDrillerPage,

though.

The key is the shouldUseAlternateTemplate method. Since it returns true here, TagDrillerPage will

ignore its normal HTML and .wod definitions, and instead get them from two methods called

Adding personalization

Developing Applications with WireHose (Mac OS X) 103

templateHTMLString and templateDefinitionString. By default, these methods will return

the HTML and .wod from the component's superclass. So TagDrillerPage ends up using

WHTagDrillerPage's template.

You can override templateHTMLString and templateDefinitionString to return strings from

any source. A very flexible and powerful technique is to store HTML and component definitions in a

database.

Building SignupPage

The SignupPage component takes the current tag from the TagDrillerPage, then asks the user

to enter a login and password, and re−enter the password. The prompts and messages will be

localizable instead of hard−coded into the page's HTML. In addition, the fetchMatchingUsers

method (which checks to see if a user has typed a login which is already in the database) and

the createUser method both dynamically resolve the current user entity.

Adding the component

Add this entry to the layout dictionary in the pages section:

pages = {

SignupPage = {

 pageName = SignupPage;

 };

 WHMainPage = {

1.

Select the Web Components group in the Files pane.2.

Choose New File... from the File menu. Scroll down to the WireHose Page template,

and click Next.

3.

Name it SignupPage, add it to the Application Server target in the Hello World

target, and click Finish.

4.

Choose New File... from the File menu. Scroll down to the WireHose Strings File

template, and click Next.

5.

Name it SignupPage, add it to the Application Server target in the Hello World

target, and click Finish.

6.

Adding personalization

Developing Applications with WireHose (Mac OS X) 104

Building the UI

SignupPage is a typical WebObjects component, with the exception that the message prompt

and field and button labels will be localizable rather than hard−coded into the HTML or Java

code. You can resolve localized strings with a simple @string.key or self.@string.key.

Note: Other useful bindings provided by WHComponent include @userCanEdit.keyPath and

@userCanView.keyPath, which return true or false by querying the application helper (and its delegate, if

set) as to whether or not the object identified by keyPath in the current context can be edited, viewed or

deleted by the current user. The keyPath is any keypath which is currently valid, so you can bind things like

@userCanEdit.helper.editingObject to a WOConditional.

Note: WebObjects Builder on Windows will not allow bindings which start with an "@", such as

@string.key, so WireHose also supports self.@string.key. There are no performance penalties for using

WHComponent's self.@string.key or self.@userCanView.keyPath bindings over @string.key or

@userCanView.keyPath.

Add this line to SignupPage.java:

public String message;

1.

Open SignupPage.wo in WebObjects Builder.2.

Select the inner WOSwitchComponent and delete it.3.

Inside the remaining WOSwitchComponent, add an H1 heading.4.

Inside the heading, add a WOString and set its value to message. This will be the

prompt for the signup page.

5.

Change SignupPage's constructor so it reads like this:

public SignupPage(WOContext context) {

6.

Adding personalization

Developing Applications with WireHose (Mac OS X) 105

 super(context);

 message = helper().stringInComponent(this, "signup");

}

Add this line to SignupPage.strings:

signup = "Sign up for a new account";

7.

Underneath the heading in SignupPage.wo, add a WOForm. Set its action to

createAccount, and set multipleSubmit to true.

8.

Delete the text inside the form and add a new table. Make it 4 rows, 2 columns, 0

border, 6 spacing, 0 padding. Uncheck both "First row cells are header cells (<TH>)"

and "Second row is wrapped in a WORepetition". Click OK.

9.

Add three WOString components to the left column in the first three rows of the

table. Set the value for the first to @string.login. Set the value for the second to

@string.password and the third to @string.passwordAgain

10.

Add these lines to SignupPage.strings:

login = "make up a user name";

password = "make up a password";

passwordAgain = "type password again";

signupButton = "Sign Up";

wantCookie = "save my login and password in a cookie";

11.

Add these lines to SignupPage.java:

public String login, password, passwordAgain;

public boolean shouldSaveCookie = false;

12.

Select the right column of the first row of the table, and add a WOTextField and set13.

Adding personalization

Developing Applications with WireHose (Mac OS X) 106

its value to login

In the second row, add a WOTextField and set its value to password. Choose the

Static Inspector on the Inspector pallete, and click Password Field (invisible typing)

14.

 In the third row, add a WOTextField and set its value to passwordAgain. Make this

a password field also.

15.

In the last row, add a WOCheckBox and set its checked to shouldSaveCookie. Add

a WOString and set its value to @string.wantCookie

16.

Select inside the form, after the table, and choose Custom WebObject from the

WebObjects menu. For "WebObjects class to use:" type WHImageButton, and

click OK.

17.

Set the image button's action to createAccount, set its filename to

helper.@itemInPage.signupButton, set its framework to

helper.@itemInPage.framework and set its label to @string.signupButton

Note: Since WireHose components can be used in any number of layouts, which may have special

graphical needs for buttons or links, WireHose includes the WHImageButton component.

WHImageButton will render itself as a hypertext link, a linked image, a graphical submit button,

or a plain submit button, depending on whether it's currently in a form or not, and if its filename

binding resolves to a string or not. Bindings such as filename and framework are typically

resolved through the layout dictionary rather than being bound directly.

18.

Adding personalization

Developing Applications with WireHose (Mac OS X) 107

Writing the code

Next, you'll add the code that makes the signup page work.

First, add this code to SignupPage.java so the signup page knows which tag was

selected in the tag driller page:

private WHTag _tag;

public void setTag(WHTag value) {

 _tag = value;

}

public WHTag tag() {

 return _tag;

}

1.

SignupPage will need to sanity check user input. The createAccount method will

use an errorMsg method to return error messages to the user:

public WOActionResults errorMsg(String msg) {

 message = helper().stringInComponent(this, msg);

 password = "";

 passwordAgain = "";

 return context().page();

}

2.

Add these lines to SignupPage.strings:

missingField = "Please enter all fields";

passwordMismatch = "Your password did not match";

reservedID = "Sorry, that login is reserved";

3.

Part of the sanity checking is to verify that the user hasn't entered a login that was

already used in the database. Add this method to SignupPage.java:

private NSArray fetchMatchingUsers() {

 EOQualifier q = new EOKeyValueQualifier(

 "login", EOQualifier.QualifierOperatorEqual, login);

 EOFetchSpecification fs =

 new EOFetchSpecification(WHApplicationHelper.userEntityName(), q, null, true, true, null);

 return session().defaultEditingContext().objectsWithFetchSpecification(fs);

}

4.

Adding personalization

Developing Applications with WireHose (Mac OS X) 108

And finally, the createAccount method itself:

public WOActionResults createAccount() {

 // sanity check user input

 if (login == null || password == null || passwordAgain == null ||

 "".equals(login) || "".equals(password) || "".equals(passwordAgain)) {

 return errorMsg("missingField");

 }

 // make sure passwords match

 if (!password.equals(passwordAgain)) {

 return errorMsg("passwordMismatch");

 }

 // make sure login wasn't already used

 NSArray users = fetchMatchingUsers();

 if (users.count() != 0) {

 return errorMsg("reservedID");

 } else {

 // never know what the current user entity might be

 WHUser user = (WHUser)WHEnterpriseObject.createAndInsertInstance(

 session().defaultEditingContext(),

 WHApplicationHelper.userEntityName(),

 WHApplicationHelper.defaultAffiliate());

 user.setDateLastLogin(new NSTimestamp());

 user.setLogin(login);

 user.setPassword(password);

 session().defaultEditingContext().saveChanges();

 // replace the guest user for this session

 helper().setUser(user);

 WHTagDrillerPage nextPage =

 (WHTagDrillerPage)pageWithName(helper().nameForPage("WHTagDrillerPage"));

 nextPage.setTag(tag());

 WOActionResults response = nextPage.addTag();

 // set a login cookie if the user asked for it

 if (shouldSaveCookie) {

 return helper().addLoginCookieToResponse(response.generateResponse());

Adding personalization

Developing Applications with WireHose (Mac OS X) 109

 } else {

 return response;

 }

 }

}

5.

Build the application, launch it, and open this URL in your browser:

http://127.0.0.1:2020/

6.

Browse through the content, and when you get to an interesting category, click the

"Add this to my page" button and create a new account.

7.

After creating your account, you'll be returned to the WHEditObjectPage, where you

can adjust settings on the newly−created channel.

8.

Adding personalization

Developing Applications with WireHose (Mac OS X) 110

http://127.0.0.1:2020/

Note: Several WireHose components, including the WHEditFetcher shown here, have a binding

called hideDetails. If this binding resolves to true, then WHEditFetcher will show an abbreviated

version of itself. See the NewsDemo sample application for an example which allows the user to

control this with a pair of hide details/show details controls.

Adding personalization

Developing Applications with WireHose (Mac OS X) 111

Finishing the user interface

The final step in building Hello World will be to clean up the user interface and add some

navigation. You'll add a login panel so users with accounts can login, and customize the view

for logged in users.

Adding a login panel

Now we'll add a login panel to Hello World. The panel will be added to the wrapper so it will

show up on every page.

Open Wrapper.wo in WebObjects Builder.1.

Add a WOConditional, and set its value to helper.user.isGuest2.

Select inside the conditional, and choose Custom WebObject from the WebObjects

menu. For "WebObjects class to use:" type WHLoginBox, and click OK.

3.

If you haven't quit and relaunched Hello World, open this link in your browser to

logout the current user:

http://127.0.0.1:2020/cgi−bin/WebObjects/HelloWorld.woa/wa/Logout

4.

Now you can use the new login box to sign in to the account you created earlier.5.

Developing Applications with WireHose (Mac OS X) 112

http://127.0.0.1:2020/cgi-bin/WebObjects/HelloWorld.woa/wa/Logout

Customizing the main page

We'll create a different appearance for the main page depending on whether the user is a guest

or not. The page guest users see will be dominated by a Yahoo−style collection of categories,

while the page registered users see will be dominated by their selected topics of interest.

Open MainPage.wo in WebObjects Builder.1.

Select the WHTagDriller component, and add a WOConditional around it. Set its

condition to helper.user.isGuest

2.

Add another WOConditional. Set its condition to helper.user.isGuest and set its

negate to true

3.

Inside the conditional, add a new table with 1 row, 2 columns, 0 border 6 spacing and

0 padding. Uncheck both "First row cells are header cells (<TH>)" and "Second row

is wrapped in a WORepetition" and click OK.

4.

Select the left cell, and choose Custom WebObject from the WebObjects menu. For

"WebObjects class to use:" type WHArea, and click OK. Set its areaName to

"main"

Note: The WHArea component iterates over the user's channels which have been mapped to its

areaName value, and renders each with a WHSwitchRenderer. Hello World's layout has just one

area, named "main".

5.

Select the right cell, and choose Custom WebObject from the WebObjects menu.

For "WebObjects class to use:" type WHTagDriller, and click OK.

6.

Set its maxChildTags to 0, numCols to 1 and its tagPath to "Content"7.

Finishing the user interface

Developing Applications with WireHose (Mac OS X) 113

If you haven't logged in yet, login, or just reload the page in your browser.8.

Adding navigation

As a final step in the development of Hello World, we'll clean up the wrapper a bit and add

some navigation.

Open Wrapper.wo in WebObjects Builder1.

Add a table, with 1 row and 2 columns.2.

Select the WHLoginBox, and cut and paste it into the left cell of the table. Set the

width of the cell to 25 percent.

3.

Remove the WOConditional which used to wrap the login box.4.

Finishing the user interface

Developing Applications with WireHose (Mac OS X) 114

Cut and paste the WHSearchBox and WHAreaWrapper into the right cell. Set the

cell's width to 75 percent.

5.

Select the entire left cell by clicking on the <TD> in the path view.6.

Add a WOConditional to wrap the entire cell (not just its contents), and set its

condition to helper.user.isGuest

7.

At the top of the page, add a WOActiveImage. Set its actionClass to

"MyHomePage", set its framework to "WireHoseLayoutSupport", and its

filename to "wirehose_small_white.gif". Add a binding named border and set it to

0.

8.

To the right of the image, type Welcome, add a WOString with its value set to

helper.user.login and type an exclamation point and (Logout).

9.

Wrap the (Logout) text in a WOConditional. Set its condition to

helper.user.isGuest and its negate to true.

10.

Select the word Logout and add a WOHyperlink with its actionClass set to

"Logout".

11.

Finishing the user interface

Developing Applications with WireHose (Mac OS X) 115

Reload the page and explore Hello World.12.

Finishing the user interface

Developing Applications with WireHose (Mac OS X) 116

Finishing the user interface

Developing Applications with WireHose (Mac OS X) 117

Further exploration

You've now completed building the Hello World application. In the process, you've learned

about important WireHose business logic concepts such as taggable and indexable resources,

channels, fetchers and tags. You've modeled WireHose resources and built custom renderers

to show them properly.

You also put into practice key concepts that give WireHose applications their user interface

flexibility, such as the session helper, the layout dictionary, pages, wrappers and localization.

There's much more to WireHose than what's been covered so far. This section will describe

some of the other features available in WireHose that are beyond the scope of this tutorial

Component channels

WHComponentChannel allows you to use any WOComponent as a channel.

Qualifier fetchers

WHQualifierFetcher instances are channels that fetch enterprise objects based on an arbitrary

qualifier. Instead of fetching resources based on their tags or keywords, a qualifier fetcher

uses a string such as "lastName = 'Weber' AND supervisor.firstName = 'Stanley'". Subclasses

of WHQualifierFetcher can provide sort orderings and qualifier bindings (enabling queries

such as "lastName = %@").

Qualifier fetchers are especially good for creating enterprise portals since you can easily

create a collection of channels that give users access to widely varying enterprise data such as

recent sales, inventory, current shipments, expiring contracts, etc., without having to write

any WireHose−specific business logic.

Developing Applications with WireHose (Mac OS X) 118

Streaming resources

Resources in WireHose are generally divided into two groups: streaming resources, which are

those which have a duration when rendered, such as video or audio clips, and non−streaming

resources, which are everything else.

WHTagFetcher has special support through its groupStreaming property for determining how

to render streaming resources. There are three different options available:

Allow the user to view individual streaming resources matched by this fetcher.•

Present all streaming resources matched by this fetcher in a single presentation.•

Combine the streaming resources from this fetcher, and all others with the same

setting, into a single presentation for the user.

•

Revision tracking

WHRevision is a subclass of WHTag which provides support for versioning WHTaggable

objects. A WHRevision tag represents a particular resource, and can be assigned to another

resource to indicate that a resource is a revision of another. Since resources can have multiple

tags, a given resource can be a revision of multiple other resources, and a given resource can

have multiple revisions (and revisions of revisions, and so on).

WHRevision provides three key methods for handling versioning: makeRevision makes

one resource a revision of another; revisionsForResource returns all revisions of a

particular resource; and originalsForRevision returns the array of objects a particular

revision is a revision of.

Further exploration

Developing Applications with WireHose (Mac OS X) 119

Access control

The WireHoseEngageSupport framework is an optional collection of classes which work

together to provide roles−based access control for taggable objects.

WHEngageTag is a WHTag subclass which implements WHTaggable and WHIndexable to

implement access control.

WHEngageUser is a subclass of WHUser. Users can belong to multiple groups, and also have

their own group so you can grant permissions directly to an individual user.

WHGroup is a tag whcih represents groups of users which have permission to perform

operations on taggable objects. Groups can be arranged in any hierarchy required;

membership in a group implies membership in all of its ancestor groups. Everyone is a

member of the "Public" group.

WHPermission is a tag which is assigned to taggable objects to indicate that members of a

specific group can perform a specific operation on the tagged objects. Permissions are

inheritable by default; if an inheritable permission is assigned to a tag, then all resources

tagged with that tag, or any of its descendent tags, will share the same permission as if it had

been assigned to each resource directly.

WHOperation objects represent a particular operation which can be exercised on a taggable

object, such as viewing, editing or deleting. Operations are hierarchical; the "Manipulate"

operation implies its descendents, "View", "Edit," "Delete" and "Assign". The "Assign"

operation models assigning tags to taggable objects.

Further exploration

Developing Applications with WireHose (Mac OS X) 120

Tag templates

WHEngageTag provides methods to use templates to create a collection of tags based on the

template at an arbitrary place in the tag hierarchy. In its most basic form, creating tags from a

template just duplicates the template's descendent tags.

Templates can be built from ordinary tags, but they achieve much of their power when used

in conjunction with WHGroupTemplate and WHPermissionTemplate tags.

A group template can have permissions associated with it to control who can view or edit the

template. The "assign" permission controls who can instantiate tags using the template.

In addition to having permissions assigned to a group template, you can also assign

permission templates. Permission templates are used to create permissions when the group

template is instantiated.

Group templates can have descendent group templates, which become descendent groups

when instantiated. You can assign permission templates to a descendent group template and

have the permissions apply to the descendent group when the parent template is instantiated.

Bookmarkable URLs

WireHose has several featurs which enable your applications to have clean, bookmarkable

URLs such as "/WireHoseDemo/MyHomePage" and still provide personalized sessions.

Further exploration

Developing Applications with WireHose (Mac OS X) 121

Cookies

WireHose applications don't store sessionIDs in the URL unless the user has disabled cookies

in the browser. WireHose provides a mechanism for for automatically detecting whether

cookies are enabled in a client's browser, and controlling whether session IDs are visible in

URLs accordingly.

When called for the first time during a session, a WireHose direct action will check to see if

cookies should be enabled. If necessary, the browser will be redirected to the GotCookies

direct action, providing a session id in both the URL and via cookies. During the GotCookies

direct action, the session's storesIDsInCookies and storesIDsInURLs are set appropriately,

and another redirect is issued back to the original direct action.

Rewrite rules

WHHyperlink is a replacement for WOHyperlink which includes support for URL−rewriting

similar to Apache's mod_rewrite. This rewriting is applied to URLs generated by your

application rather than incoming browser requests as with mod_rewrite.

You can provide a perl−style regular expression that gets applied to the URL, providing an

outgoing−URL counterpart to Apache's mod_rewrite (which is applied to incoming request

URLs).

For example, this rule

s'cgi−bin/WebObjects/WireHoseTest.woa/wa/Drill(?:\\?path=|)'Resources/'

will transform a URL like

http://www.wirehose.com/cgi−bin/WebObjects/WireHoseTest.woa/wa/Drill?path=Local%2FNews

into

http://www.wirehose.com/Resources/Local/News

Most WireHose components which generate links to direct actions, such as WHTagDriller or

Further exploration

Developing Applications with WireHose (Mac OS X) 122

WHNavigationBox, provide a rewriteRule binding. These bindings are usually resolved via

the layout dictionary.

Special components

WireHose includes a lot of reusable components. Here are a few of our favorites that weren't

used in the Hello World tutorial:

WHShowTagDataSource

Allows embedding a WHTagDataSource in a web page, through bindings such as

optionalTags and keywordString. You can set the optionalTags and requiredTags

bindings to an individual tag, arrays of tags, or a string or arrays of strings which will

be interpreted as tagpaths.

WHHTMLString

Renders HTML text, substituting for <WIREHOSE type=FETCHER

tag=tagPath fetchlimit=numItemsToDisplay> with the rendered

objects matched by the specified tag.

WHMatrixTable

WHMatrixTable displays an array of objects in a multi−column layout. It attempts to

be smart about the number of columns and rows it uses to render itself; this behavior

is controlled by several optional bindings. If all these are left unbound,

WHMatrixTable will set its rows & columns roughly proportional to the "golden

ratio".

Caching

Further exploration

Developing Applications with WireHose (Mac OS X) 123

WHCachingDataSource

WHCachingDataSource is an abstract class which provides all the necessary infrastructure for

fetching enterprise objects into a cache, returning subsets of objects from the cache, and

invalidating the cache when necessary.

If a caching datasource is created with an owner which implements the WHFetcher interface,

such as a WHTagFetcher, it will use its owner's values for its properties such as

fetchLimit. You can also instantiate a caching datasource and set the its properties

directly; this is useful when using a caching datasource as an EODataSource for a display

group, for example.

WireHose provides two concrete implementations, WHTagDataSource and

WHQualifierDataSource. You can create your own by implementing

fetchResourcesIntoEditingContext, which will be called as necessary by

WHCachingDataSource itself.

WHConcreteFetcher

WHConcreteFetcher provides an abstract implementation of a channel which owns a caching

datasource. WireHose provides two concrete implementations, WHTagFetcher and

WHQualifierFetcher. WHConcreteFetcher is a full−service implementation of the WHFetcher

interface, and requires minimal customization to handle new fetching behavior.

ShouldInvalidateCache notifications

To prevent caches from becoming stale, WHFetcher defines the ShouldInvalidateCache

notification. Fetchers whose cache should be invalidated when a particular object changes can

register for these notifications. For example, WHTagDataSource registers for

ShouldInvalidateCache notifications for each of its optional and required tags, and will

invalidate its cache if any of its tags are changed.

For fetchers that deal with enterprise objects, the notification object will be the globalID of

the object which has changed; WHTag and the default implementation of the taggable

interface will automatically post these notifications for tags.

Further exploration

Developing Applications with WireHose (Mac OS X) 124

WHConcreteFetcher and its companion WHCachingDataSource provide an implementation

of the WHFetcher interface for fetching enterprise objects; they handle caching and

propagation of ShouldInvalidateCache notifications.

Multiple affiliates

WireHose has special support for creating and deploying large numbers of re−branded portals

sharing some common resources, as for example in an application service provider

environment, community publishing, or higher education.

WireHose provides built−in support for handling multiple sites from a single set of databases

via subentities. Most WireHose base entities, such as WHTag, WHTagFetcherFactory,

WHUser, etc., have an affiliate property, which is used to identify to which affiliate a

particular object belongs. The current affiliate name is controlled by the

WHDefaultAffiliate property

For large deployments, WireHose can make extensive use of entity inheritance, taking

advantage of the fact if an entity is not visible at runtime, any database rows described that

entity are simply unavailable to the application. This is a simple but effective way to partition

objects between separate application instances which share identical codebases and differ

only in configuration files or launch arguments.

For example, if you are deploying multiple news portals, users connecting to the Seattle portal

should only see Seattle−area traffic cams, and Portland users should only see Portland−area

traffic cams, but both should have access to national newsfeeds. WHEnterpriseObject

provides several methods for dynamically creating subentities at runtime, so you don't have to

manually model many common types of inheritance in EOModeler.

Further exploration

Developing Applications with WireHose (Mac OS X) 125

Affiliate−based inheritance

The most prevalent inheritance model used in WireHose is that of affiliate−based inheritance.

This approach is used by WHTag, WHUser, WHTagFetcherFactory, WHDrillFetcherFactory

and WHQualifierFetcherFactory, and can easily be used in your own resource and channel

factory entities.

In this approach, you define an attribute on your base entity called "affiliate". This attribute

will be used with a restricting qualifier to identify subentities. The restricting qualifier for the

base entity is "affiliate = nil", and the restricting qualifier for an affiliate−based subentity

would be "affiliate = affiliateName". For example, given a base entity named "Picture" and an

affiliate of "Seattle", the subentity would be named "SeattlePicture" and the restricting

qualifier would be "affiliate = 'Seattle'".

As an alternative to the affiliate attribute, you can use an attribute called "entityType". If the

base entity has an attribute named entityType, the restricting qualifier would be "entityType =

entityName". This is the approach used by WHTag.

Automatic subentity creation

If the system property WHDisableAutoSubEntities is false, WHApplicationHelper uses

WHEnterpriseObject's createSubEntitiesForAffiliates to automatically create

subentities for a given list of affiliates for each entity which has an "affiliate" or "entityType"

attribute. You can override this behavior on a per−entity basis by including a

WHPreventAutoSubEntities = YES entry in the entity's userinfo dictionary. (If you

are not using the WireHoseLayoutSupport framework, as in a command−line tool, you will

need to call createSubEntitiesForAffiliates yourself.)

You can also create subentities at runtime which use multiple−table rather than single−table

inheritance. WHEnterpriseObject's createSubEntity method lets you specify a

restricting qualifier as well as an external name (i.e., table name) for a subentity. Any

subentity created by WHEnterpriseObject will have a WHCreatedSubEntity = YES

entry in its userinfo dictionary, and createSubEntitiesForAffiliates will not

create subentities for a given entity if it finds this. WHApplicationHelper posts a

notification before it creates subentities, so you can register for this notification if you

Further exploration

Developing Applications with WireHose (Mac OS X) 126

need to customize subentity creation.

The property WHUserEntityName controls which base entity WHApplicationHelper will

use when fetching and creating users. The actual entity fetched and created will be an

affiliate−based subentity of this entity for the default affiliate, if available. For example, if

WHDefaultAffiliate is "Seattle" and WHUserEntityName is "WHUser" (the

default), users and guest users will be of the "SeattleUser" entity if it exists.

You can override WHApplicationHelper's automatic subentity creation in several ways:

If the property WHDisableAutoSubEntities is YES (or true),

WHApplicationHelper will not create any subentities during startup.

•

Since WHEnterpriseObject's subentity creation methods won't create a subentity if it

already exists, you can create subentities in response to the

ApplicationHelperWillFinishInitializing notification, which is

posted before WHApplicationHelper creates any subentities.

•

Add entries to the "autoSubEntities" key in your application's layout dictionary,

which will get created before WHApplicationHelper creates subentities for all

available affiliates. Each key in this dictionary is the name of a subentity to create,

and its associated value is a dictionary describing the subentity. For example:

MySpecialPicture = {

 externalName = Picture;

 restrictingQualifier = "(affiliate = 'MySpecial')";

 parent = Picture;

 };

Depending on how you have your inheritance set up, you can specify one or both of

externalName and restrictingQualifier.

•

Further exploration

Developing Applications with WireHose (Mac OS X) 127

Multiple affiliate best practices

The best way to handle multiple affiliates in your code is to not make any assumptions about

whether or not subentities are available. This section provides some techniques you should

follow in your own code.

Modeling entities

To model an entity which may become the parent of affiliate−based subentities, set the entity

so it is not abstract and does not have a restricting qualifier on the affiliate property.

WireHose will add the appropriate restricting qualifier to the parent entity when creating the

first subentity.

Creating objects

WHEnterpriseObject provides the

createAndInsertInstance(EOEditingContext, String entityName,

String affiliateName) utility method, which functions similarly to the one defined in

EOUtilities. The WireHose version provides an additional parameter, affiliateName, which is

used to specify the affiliate the newly created instance should belong to.

If there is an affiliate−based subentity available for the specified entity, then the returned

object will be of that entity, otherwise it will be of the specified entity. In either case, the

affiliate property will be set on the newly created object if the entity has a class property

named "affiliate".

Further exploration

Developing Applications with WireHose (Mac OS X) 128

Fetching objects

If you are fetching objects which belong to a specific affiliate, check for the existence of an

affiliate−based subentity like this:

EOEditingContext ec; // assume exists

EOFetchSpecification fetchSpec; // assume exists

String affiliateName = "MyAffiliate";

String entityName = "SomeEntity";

String entityToFetch =

 WHEnterpriseObject.subEntityNameForAffiliate(entityName, affiliateName);

if (EOUtilities.modelGroup(ec).entityNamed(entityToFetch) == null) {

 entityToFetch = entityName;

}

fetchSpec.setEntity(entityToFetch);

NSArray objs = ec.objectsWithFetchSpecification(fetchSpec);

Further exploration

Developing Applications with WireHose (Mac OS X) 129

	Table of Contents
	About this document
	Contents
	Related documentation
	About WireHose
	WireHose features
	WireHose architecture
	Core frameworks
	Additional frameworks
	Application structure

	Sample applications
	NewsDemo
	Conexiones

	About Hello World
	Syndicated content
	Aggregators
	Browsing and searching
	Personalization
	What WireHose provides

	WireHose business logic concepts
	Resources
	Tags
	Personalization
	Fetchers

	Getting started
	Before you begin
	Creating the project
	Creating the database
	Setting up OpenBase
	Setting up FrontBase

	Configuring Hello World for the database
	The adaptor dictionary
	Database and prototype frameworks

	Modeling the data
	Modeling feeds
	Creating RSSFeed
	Adding attributes
	Uniquing items

	Modeling items
	Creating RSSItem
	Adding attributes
	Uniquing items

	Relating feeds and items
	Relating items to feeds
	Relating feeds to items

	Generating SQL and Java
	Generating SQL and Java for feeds
	Generating SQL and Java for items
	Using the layout dictionary
	Editors and renderers

	Importing feeds
	Sample feeds list
	XML mapping model
	Fetching dictionaries
	Cleaning snapshots
	Enabling the importer
	Enabling logging
	Running the importer
	Browsing feeds

	Crawling feeds
	Fetching feeds to crawl
	Crawling feeds
	Tagging items
	Running the import
	Importing in a separate thread
	Browsing items
	Customizing how items are shown

	WireHose layout concepts
	The application helper
	The session helper
	WireHose user interface concepts
	The layout dictionary

	Customizing the user interface
	Making the main page
	Adding keyword searching
	Adding the search box
	Customizing the search prompt
	Customizing the search box on specific pages
	Removing the search box from a specific page

	Adding personalization
	Add this to my page
	Building TagDrillerPage
	Building SignupPage
	Adding the component
	Building the UI
	Writing the code

	Finishing the user interface
	Adding a login panel
	Customizing the main page
	Adding navigation

	Further exploration
	Component channels
	Qualifier fetchers
	Streaming resources
	Revision tracking
	Access control
	Tag templates
	Bookmarkable URLs
	Special components
	Caching
	Multiple affiliates
	Affiliate-based inheritance
	Automatic subentity creation
	Multiple affiliate best practices

