Developing Applications with WireHose (Mac OS X)

Copyright ©2000-2003 Bulldog Beach Interactive, Inc.

Developing Applications with WireHose (Mac OS X)

Table of Contents

ADOUL thiS HOCUMEBNL.....ceiiiiiiiiiieie e e e e e e e e s st e e e e e e e e s bbb e eeaaeeas 1
(670] 01 (=] 0] £ T PP P PPP PP PPPPPPPPP 1
RelateddOCUMENTALION..ueiiiiiee ittt e e e e e e e e e s b e e e e e e e e nnnneees 2
Y o Lo 0L YAV 1= o o S =P 3
A VT [0 TS =] 1= = L] = 3
Wir€HOSEAIChITECIUIE. ... e 5
COrEfTAMEBWOIKS. ... ettt ettt ettt ettt e e et e et e e e e e e e e e e eeaaaaaaaaaaaans 5
Additional framMEWOTKS.........ooviiiiiiiii 6
WY o] o[To= 11 Te] £ =1 £ U o1 (1 = 6
SaMPlEaPPlICALIONS.cciiieeieci e e 7
NEWSDEBIMID. ...ttt ettt e e et e ettt e e e e e e e e e eesebba e e e e eeeeeessennann s 7
(0] 011 (T0] == PRSP PPPRRRR 8
ADOUL HEIO WOTI. ...t e e e eeeeas 11
SYNAICAIEMEONTENT.eiiiiee ittt e e e e s s r e e e e e e aana 12
F o [0 (=T o Fo 0] 4= PP URPPPPRPPPTN 12
BrowsingandSEarChINGc.uueeiiiieeiiiiiii et e e 12
ST =10 T 17 i o] o 1P 13
WhatWIr€HOSEPIOVIAES.ccoiiiiiiiiiieee et 14
WireHose busSINESIOQIC CONCEPLS.....coeviiiiiiiie i e i e e e e e e e e e e e e e e ee it e e e e e e eeeeenens 15
RESOUICES. ...ttt e e e ettt ettt e e e e e e e e eee bbb e e e e eaaeenenns 15
L= 1 £ TP 16
PErSONAIIZALION. ...t e aeeas 16
2] (o] =T PP PPRRPP PP 17
(€12 1] oo [R5 £= T4 (T o PSR PP SPTPPPPPPPRP 19
BefOreyOUDEQIN ... 19
(1oL i] [0 1 gT=T o] o] [T o SO PPPPPRPPPO 19
CreatingtnedatabaSE.uuiiiiei e 20
SettiNQUP OPENBASE.......ceiiiiiiiiiiitie ittt e e e 21
SettiNGUP FIONTBASE.ttt eeeeeeeseeeseeeeees 22

Developing Applications with WireHose (Mac OS X)

Table of Contents

Getting started

ConfiguringHello World for thedatabase..............ccccco 24
The adaptordiClioNary.........cccoo i, 24
Database@ndprototypeframeworks. ... 26

MOAEING thE ALt e e e e e e e e e e e e e e e e e e annnnes 28

MOAEINGTEEUS. ... e e e e e e e e e e e e 28
CreatiNngRSSFEEM.... ... 28
Adding attribDULES. ... 31
L L1 o [T o 1L (= 1. 1= 33

1Y/ ToTo 1= 1T T L =3 1 S 34
CreatingRSSIEML....cooviiiii 34
AddingattribULES. ... ———— 35
UNIQUINGITEIMS....ciiiiiiieiieeceeeeee e, 36

Relatingfeedsanditems............coovviiiiiii e, 37
RelatingitemMSIO FEEUS ... 37
Relatingfe@dSto ITEIMS.......ceieeeee e 38

GeneratiNngSQL ANUJAVA.......cuiieiiiiiiiiii e e e 39
GeneratingSQL andJavafor fEEAS...........ooiiiiiiiiie e 39
GeneratingSQL andJavafor ITEIMS.cciiiiiiiiiie e 42
(O LYo R aToY FoN Yo 10 o [Tox i o] F= 1 YRR 43
Editorsandrenderers. 43

IMPOItING TEEAS.....ccc e, 45

SaAMPIEfEEASIISt....ovveeiiiiieeeeeee 49

DY | £ = o] o] o 4T To 1= 51

FetchingdiCtiONANIES. ... 53

CleaningSNaPSNOLS ...t 54

ENabliNgtheimMPOITEI. ... 55

ENabINGIOGQING. ..o 61

RUNNINGENEIMPOITEL......eeeiiie e 63

BrOWSINGTEEUS.ttt e e e e 63

Developing Applications with WireHose (Mac OS X)

Table of Contents

Crawling fEEAS......oo i ———— 64
Fetchingfeedsto CraWl.........ccoooi e e e seesseeeeeeeeees 65
Crawlingfeeds.....coovvvviie 67
1= Te oL a o 1 =] 14 OO PP PR PPPPPPPI 75
RUNNINGENEIMPOIT. ... 76
IMportingin asSeParatenread...........coouiiiiiiiiie e 77
BrOWSINGIIEMIS. ...ttt e e e e e e e e e e e e e e e e e 82
CusStomizZiNgNOW ItEMSArESNOWIL........eviiieiiiiiiiiiiee et 82

AT =T Lo RSN Fo Y0 T | e o =T o U 84
TheappliCatiONNEIPET..........vieie e e e e e e 85
TheSESSIOMEIPEL.......ccc e 86
WireHOSEUSENNEITACECONCEPLS. .. uuviiiiiiiiiiiiiiiriirerieeereeeree e e reere e eeereereeeeeeeeeeaaeees 88
The layOULAICHONANY........cviieiiieeiieeeeee et 90

CUuStOMIZING the USErINTEITACE..........uiiiiiiieei e e e 91
MaKiNg thEMAINPAGE. ... et e e e e e e e e e annees 91
AddiNg KEYWOrdSEArCHING........coiiiiiiiiiiiie e 93

AddING tNESEAICHIOX.eiiiiiiiiiie e 93
Customizingthe SearChprOMPL..........uuiiiiiieiii e 94
Customizingthesearchhox onspecificpages.........ccccoeeeee e, 96
Removingthe searchhox from a specificpage........ccccceeeeiiieeiieeviiiiiie e, 99

Adding PersoNaliZatiOn...........cceiiiiiiiiiiiiiieieee e, 101
Add thiSTO MY PAGE....ciiieiiieiieeeeee 101
Building TagDrillerPage........ccoovvviiiiiiiiiii 102

T UT] [[TaTo IS Te L TUT o1 == Vo = 104
AddiNG the COMPONENL.........iiiiiiiiie e 104
BUIIAING TN UL e e 105
WIHEING tNECOTE ...t e e 108

Developing Applications with WireHose (Mac OS X)

Table of Contents

Finishing the Userinterface..........ovvvii 112
Addingalogin PANEL..........coooi i —————————— 112
CustomizingtheMaiNPagE.........coovviiieiieeee e, 113
AdAING NAVIGALION. ...ttt e e et e e e e s e snnbeee s 114

FUINET @XPIOTATION. ...ttt e e e e s e e e e e e s r e e e e e e e aann 118
COMPONENENANNEIS ..ottt 118
QUAlIfIEr FEICNEIS ... 118
Y =TT a a1l e £=Es0 10 o] =1 PP 119
SNV [(0] a1 = T3 (1 o U 119
ACCESSCONIIAL ... 120
TagteMPIALESo ————————— 121
BOOKMArKaDIEIRLSueeiiiiiiiiie e 121
SPECIAICOMPONENTS. e e e b es s s sesseessaessenssneeeeeseees 123
10T 1 T PSPPSR 123
MUILIPlE AffiIATES.eeeeiiee e 125

Affiliate—basedinheritanCe..........cccccvvveiie e 126
AUtOMALICSUDENTILYCIEALION.. .. .cviiieiiiiiiiiee ettt 126

Multiple affiliate bestpractices

About this document

WireHose Server gives developers the power to create fast, personalizable web applications
that categorize, index and deliver any media type, like video clips, stock quotes or legacy
data. It features a simple, flexible API for adding new personalizable components and

resource types, making it perfect for creating enterprise portals and high-traffic internet sites.
Why read this document

This document teaches you how to build web applications using WireHose by leading you
through the process of developing a personalizable news aggregator. It covers the overall
architecture of a WireHose application, key portions of the WireHose API, and discusses the

use of WireHose tools. It also includes information about advanced WireHose topics.

It is available in two editions, one for developers using Mac OS X, and one for developers

using Windows.
What you should already know

You should be familiar with building and running applications with WebObjects.
Contents

About WireHose

Summarizes core WireHose features and architecture.
About Hello World

Describes the application which will be built during this tutorial.
WireHose business logic concepts

Introduces key WireHose concepts such as tags, resources and channels.
Getting started

Covers setting up a new WireHose project and configuring the database.
Modeling the data

Works through modeling syndicated items and feeds as WireHose resources.
Importing feeds

Covers building an importer which will insert feeds into the database.

Developing Applications with WireHose (Mac OS X) 1

About this document

Crawling feeds
Describes the process of building a crawler which will import items from feeds on a
regular basis.

WireHose layout concepts
Describes key WireHose layout components such as pages, wrappers, areas and the
layout dictionary.

Customizing the user interface
Utilizes WireHose layout features to control the application's appearance and
behavior with minimal code.

Adding personalization
Works through allowing users to sign up for a new account and personalizing their
page.

Finishing the user interface
Adding navigation and other niceties to the sample application.

Further exploration

Summarizes several WireHose features which were not covered in this document.

Related documentation

To get an overall feel for the various parts of the WireHose API, see the Developer Overview,

which provides brief descriptions of important WireHose concepts and classes.

The Java API Reference is the authoritative source for information about WireHose concepts
and classes.

See the Properties Reference for details about controlling the runtime behavior of WireHose
applications through command-line parameters.

Database Setup describes how to set up WireHose to work with nearly any database.

For details about regular expressions support in WireHose, see the Quick Start and Pattern
Reference.

Developing Applications with WireHose (Mac OS X) 2

http://www.wirehose.com/developer/DeveloperOverview.html
http://www.wirehose.com/developer/javadoc/
http://www.wirehose.com/developer/Properties.html
http://www.wirehose.com/developer/DatabaseSetup.html
http://www.wirehose.com/developer/javadoc/com/stevesoft/pat/package-summary.html#quickstart
http://www.wirehose.com/developer/javadoc/com/stevesoft/pat/package-summary.html#reference
http://www.wirehose.com/developer/javadoc/com/stevesoft/pat/package-summary.html#reference

About WireHose

WireHose gives Java developers the power to create fast, personalizable web applications that
categorize, index and deliver any media type, like video clips, stock quotes or legacy data. It
features a simple, flexible API for adding new personalizable components and resource types,

making it perfect for creating enterprise portals in addition to high—traffic internet sites.
WireHose features

Content management

WireHose provides a powerful, flexible foundation for building content management systems.
Managed content as well as legacy data sources can be categorized and searched by metadata
and keyword indexing. Users can easily browse, search and personalize access to any
WireHose resources, regardless of data source or content type. Our advanced design enables

creation of intelligent metadata with behaviors beyond simple organization into categories.
Personalization

WireHose provides everything you need to create high—performance, scalable personalized
applications. Developers can build easy, intuitive, interfaces for users to customize the
content and resources of a site within roles—based limits set by the site administrator. Visitors
access a personal site that's fully customized to their needs, on any kind of output device,

including email, cell phones, pagers or web services.

Developing Applications with WireHose (Mac OS X) 3

About WireHose

Access control

Developers can easily integrate a WireHose application with existing authentication and
authorization systems to control how users are authenticated and what they can view, edit or
delete. WireHose also provides a flexible and powerful system for enforcing roles—based
access control to metadata, channels and content, as well as a very powerful group and
permission templating capability, which is ideal for creating multiple groups and categories
with preassigned permissions, as when creating multiple departments, workgroups or

classrooms within an organization.

Dynamic layouts

WireHose deployments can support multiple branded affiliates, as in an application service
provider environment, or to allow the user to personalize the look of their page in addition to
personalizing its content. The user interface abstraction layer lets developers support multiple
output formats, such as XML, HDML, SMIL, RSS, RDF, etc., without duplicating important
business logic.

Rapid development

The WireHose frameworks allow developers to build content management and portal
applications faster, through the use of templates for rapidly building new applications and
reusable components, and a next—generation content management portal APIl. WireHose
provides a consistent interface for managing metadata regardless of back—end data source,

allowing developers to focus on relevant business logic rather than implementation details.

Developing Applications with WireHose (Mac OS X) 4

About WireHose

Database independence

Databases can be switched during development or deployment without rewriting code. Any
database row can become an object which can be categorized and fetched by tags and
keywords. Any foreign JDBC, LDAP, JNDI source can be custom queried, and take
advantage of finely tunable caching to ensure common requests are not fetched more often

than necessary.

WireHose architecture

WireHose is distributed as a collection of compiled frameworks, documentation and sample
code. A WireHose application links to the WireHose frameworks, and adds business logic,
web component definitions, application and session-level logic, and configuration files.
WireHose applications can also be command-line tools or provide web services via SOAP or
XML-RPC.

Core frameworks

These are the basic WireHose frameworks:

WireHoseBase
Contains basic enterprise object interfaces and classes used by all WireHose projects,
as well as utility classes used internally by WireHose.

WireHoselLayoutSupport
Contains core web application layout classes, including application and session-level
logic. Also provides reusable components, page—-level components and direct action
interfaces for WireHose pages.

WireHoseEngageSupport
An optional framework which provides roles—based access control to taggable objects

and a templating system for creating hierarchical collections of tags.

Developing Applications with WireHose (Mac OS X) 5

About WireHose

Additional frameworks

WireHose also provides some optional frameworks:

WHOpenBasePrototypes

Contains enterprise object attribute prototype definitions for OpenBase.
WHFrontBasePrototypes

Contains enterprise object attribute prototype definitions for FrontBase.
WireHoseWOBUilderBindings

A fake framework and associated Project Builder project which helps WebObjects

Builder properly display the custom bindings available in WireHose components.

Application structure

While you can build simple WireHose applications in a single project —— and that is the
approach taken in this tutorial —— to achieve maximum code reuse, you'll probably want to
structure your application as a collection of frameworks. This approach allows you to build

multiple applications which share common code without duplication.

Here's an example of an extremely factored approach:

User frameworks
Contain custom user classes and any objects which manage collections of channels
for users.

Tag frameworks
Contain custom tag classes. For example, you may have one framework for workflow
tags, and another for tags which model versioning or special access control
requirements. Since WireHose provides a unified API for dealing with all types of
tags, each collection of tag types can be considered a single extension to an
application. These frameworks may include default user interface component
definitions, which could be overridden in other frameworks or the application itself.

Channel frameworks
Contain custom channel types. For example, opinion polls, Amazon searches, legacy
calendar access, etc. These frameworks may include default user interface component

definitions, which could be overridden in other frameworks or the application itself.

Developing Applications with WireHose (Mac OS X) 6

About WireHose

Resource frameworks
Contain custom taggable and indexable objects. For example, bookmarks, pictures,
email messages, contacts, movies, news stories, Word documents, spreadsheets —— or
any other type of enterprise object. These frameworks may include default user
interface component definitions, which could be overridden in other frameworks or
the application itself.

Layout frameworks
Contain web components and images which make up various layouts, or skins, for a
web application. For example, in addition to having "plain" or "fancy" layouts, you

can also define layouts for various XML formats, or even PDF or Flash.

Sample applications

There are a lot of features in WireHose that the Hello World application won't cover.

WireHose comes with several other example applications which demonstrate various features.
NewsDemo

NewsDemo is a personalizable news aggregator which combines articles from multiple
categories into topics. It provides users the ability to personalize access to news and traffic
cams, as well as letting them choose from several possible layouts. NewsDemo was designed
to handle the high—traffic personalization needs of television station and newspaper news

portals.

NewsDemo also includes an administration interface which allows editors to create

collections of pre—built topics for users to choose from.

Developing Applications with WireHose (Mac OS X) 7

About WireHose

WireHose: Blg Dog's News

) [About | [Cus IrNechyth@OUtJ
WireHose
N |
o "‘)| | search the I
Science News @ . ¢| NCWS 5P°’“§hf @ m.:.;,mkm

{ WireHose: Personalize Your News %,
Scucnﬂs?s aﬂempf to | £ Wl Y- ; ; y —
clone wool ly L < | A A @ whup.lIww,wuehose.commlreHoseDemolMvHomePag Qv Google i

WO5.2 Refl Java 2 AP1 JavaMail AP w@m

mammoth
Customize i
Tining is fatal flow @ m &P Personalize Your News

Indcpendont 0200 A
for missile defense

Mew Sciemist 03:00 P

First time visitor? Search the news:
B 5 Chck here 1o gel your TOP STORIES Type some keywords and
First HIV hybrid own news page! click "search ”
formed in a human Claudette downgraded to tropical Example "boeing or
revealed Already made your storm airbus not crash
New Sciemist 0300 PW own page? CNN 03:.00 PM
Enter your 1D and
7 password and dick “sign ™
Pioneer contests o retieve yournews Missing schoolgirl 'unharmed' Scuek IR RoRrowss
Italy order to page 88¢ 01:17 PH =
destroy gene maize '
feuters 017 Ptk your 10

VKT Israelis Question Palestinian
your pastword Security After Fatal Stabbing

New York Times 01:17 PM

Pine St (Downt
DCheck misboxw save Iragi Governing Council Moves to Seattle)
your 10 and password in Create War Crimes Court -

your web browser so you w York Tin 17 PM
donLhave 10 sign in Ne ork Times 0

Anronomy unloek- van

again

OFFBEAT r;:s“lrg ::nne calls home

NEWS : &) L
Yesier Way (Downtown e

Seattle)

Conexiones

Conexiones gives educators the power to open a world of interactive communication,

exchanging resources and ideas between students, parents and teachers.

Students learn better when they're engaged with interactive, compelling content that is easy to
navigate, and personalized to their learning level and special interests.

Teachers post assignments and classroom resources. Students browse resources, post
homework and participate in classroom research. Parents monitor the student/teacher
relationship and participate directly in the learning process. Group participation enriches the

learning experience for all involved.
Conexiones involves students in an interactive learning community, where they communicate

with other students, teachers and parents to help create their own curriculum, based on their

specific academic interests, strengths and weaknesses.

Developing Applications with WireHose (Mac OS X) 8

About WireHose

welcome, student!

I S my. Conexiones
|Announcements iow vy Dete}Viow by Nome } :] Add New |

Bookmark
| Classrooms 2)

— Picture x
n Text

om—| W88V steven |

|Feedback

ABKDEFGHIJCHCHLMNOPRSTUVWYZ.
|My Bookmarks

1efghijchchlmnoprstu wyz
| My Groups
| My Journal
| My Pictures
| My Video

M_ﬂufm.

Pictura: 12:41 PM -- My class

Manage any type of content

Educators, parents and students can enhance learning through interactive displays of
animation, video and audio. Word processing, spreadsheets and presentations are also easily
incorporated.

Full indexing and categorization

Users can easily track down relevant content in any format by keywords and categories,
rapidly connecting them with the resources they're looking for.

Personalization
Users can upload their own content into personal categories such as "My Bookmarks" or "My

Pictures”, and easily share it with other classroom members or the general public. Everyone
has quick access to their own content, classrooms and groups.

Developing Applications with WireHose (Mac OS X) 9

About WireHose

Parental access

Parents can easily see how their students are doing, and exchange private feedback with

teachers, involving them directly in fulfilling their specific educational needs.

Access control

Access to classrooms, groups and content can be controlled as required, respecting the
privacy and special needs of students and staff. Administrators can easily create classrooms

with partitioned private and public content, categories and groups.

Flexible classroom and group templates

Teachers can organize the content for their classrooms the way they see fit, and
administrators can provide useful defaults. Administrators can define default categories,
groups and permissions when creating new classrooms, groups and users. Templates can
define any number of sub—categories and groups, and can be easily fine—tuned for individual

needs.
Easy to use
Conexiones features an uncluttered interface, simple enough for children and parents to use,

yet unleashes the full power of a real content management portal for teachers and

administrators.

Developing Applications with WireHose (Mac OS X) 10

About Hello World

This document will teach you the fundamentals of building WireHose applications by

walking you step by step through the process of putting a sample application together. As is
traditional, this application will be called "Hello World".

However, since the WireHose frameworks provide significant functionality out of the box,

this Hello World application will do much more than simply echo some text to the screen.

Hello World will provide personalized access to thousands of syndicated headlines, photos,
musings and other content, from hundreds of websites across the internet. In other words,
you'll build a world—class personalizable aggregator of syndicated content.

Gl HelloWorld
-I 4 »]@ A A|@ € http://127.0.0.1:2020/cgi-bin/Web(® = Q- C

oogle
~ [Rou WebOb w052 Java 2 AP JavaMail APL D

Q Welcome, stanley! (Logout)

Search feeds: (search)

“178) Clickona
Cardening —— category
D below
H Industri ' Ay in

Reel <~ AutoRewind hose reel - | received this Consumer
item last week and hooked it up the same day. Cultur
The installation instructions are very clear. It
took about 10 minutes from start to finish, | Dow lones
hooked up a new water hose that is 125 feet 30
long. | was amazed at how ... (Backyard Blitz) finance
£ 12 Asian Inspiration - 18 May -~ Scott built a nefal

- —
sleek new deck off the side of the house to Industey
encourage Julia, Allison and their friends out Internet
into the new garden. Treated pine posts Regional
(H4,90x90mm) installed vertically inground in Science
concrete support bearers (H3,190x45mm) ~
connected with ... (Backyard Blitz) el =

Developing Applications with WireHose (Mac OS X) 11

About Hello World

Syndicated content

Thousands of websites now distribute their content through more than just a web browser.
These sites make summaries of their new content available in XML files. The most common
format for these files is known as "RSS", introduced by Netscape and popularized by
Userland Software. The RSS file for a website is referred to as a "feed".

There is no consensus on what RSS stands for —— some call it "Rich Site Summary", while
others call it "Really Simple Syndication”. No matter how you refer to it, though, it is a

powerful, yet simple, way to gather and distribute information.

There are several types of RSS files; for this tutorial, we'll be focusing on the simplest format,
known as RSS 2.0. A specification for the RSS 2.0 format can be found here.

Aggregators

An aggregator is an application which collects content from diverse sources and presents it in
an organized fashion. There are two common types of aggregators, those which run on a
desktop and provide content to a single user, and those which run on a server and provide

content to multiple users.

Hello World will be a server—based application which provides personalized access to the

content distributed in RSS feeds to multiple users.

Browsing and searching

The most common user interface for presenting aggregated content is to let users browse
through the individual feeds, perhaps arranged into categories. Hello World will use this
interface, with the added ability to browse through the individual items contained within the
feeds.

A good aggregator should also allow the user to search the available feeds and items by

keywords; since this capability is built into WireHose, Hello World will also provide this

function.

Developing Applications with WireHose (Mac OS X) 12

http://backend.userland.com/rss

About Hello World

]_‘6‘0 0 HelloWorld
}| 4 » l@ A A] @ @ hitp://127.0.0.1:2020/cgi-bin/Web0 & |7 Q~ Coc

m Roundup WebObjectsDocs WOS5.2 Reference Java 2 API JavaMall APL

»
Q Welcome, stanley! (Logout)

Search feeds: (search)

Browsing resources...
Al his 1o my page!
Content : Industry :

Click on a category below

Aerospace and Defense Industey Book Publishing News
News British Telecom
Agricuiture News Broadcasting News.
Alrline News Cable Industry News
Automotive News Cars Everything
Biotech News.

i /i - yling, Price Point. -- Mazda hit the sweet
spot when it debuted the all-new, rotary-powered RX-8 sports car in January
at the North American International Auto Show in Detroit. (Cars Everything)

X

o Mazda Releases All,Now Four,Doar FoursSeater Snarts Cac 'Mazda RXG R o0
- Displiy & menu
 —

Personalization

Since an aggregator may collect items from hundreds or thousands of feeds, it's important to
let users select the subset of the available content they're interested in. Otherwise, attempting

to keep up with all that information would be like drinking from a firehose!

The way personalization is handled in most aggregators is to let users select a collection of
feeds they're interested in. The items in these feeds are then presented to the user as a

collection of boxes on a page, one per feed, each with a list of the items currently in the feed.

Hello World will go one better than that. Since users will be able to browse through the
individual items in the feeds, they'll also be able to personalize access to collections of items,
no matter which feed they originated from. In addition, users will be able to easily turn the

results of any keyword search into a personalized topic on their page.

Developing Applications with WireHose (Mac OS X) 13

About Hello World

What WireHose provides

WireHose provides much of Hello World's functionality out of the box. Content
categorization, browsing, searching and personalization are all handled by the WireHose

frameworks.

You'll model the database attributes of feeds and items, and provide users the ability to sign
up for a new account. You'll also write the feed crawler, which will fetch the individual feeds
and import new items into the database. And, of course, you'll have full control over the

application's look and feel.

HelloWorld

@‘ A-A) @ http://127.0.0.1:2020/cgi-bin/Webt @ '@. e

WO05.2 Java 2 AP1 JavaMail APT M ‘
Q Welcome, guest!

Members, login: Search feeds: ~ | (Seach)
your 1D

Click on a category below
your password

(Logn) Book Reviews. Car Africa, Asia, Europe...
Survey, Gardening-.. Science

(_'Remember my ID Culture Biological Sciences

and password Arts and culture News, News, bottomquark

Developing Applications with WireHose (Mac OS X) 14

WireHose business logic concepts

Nearly all WebObijects applications revolve around fetching, inserting and modifying data in
a database. The enterprise objects frameworks within WebObjects make this possible in a
database-independent fashion, allowing you to focus on the business logic within your

application rather than the details of a relational database.

Often you will want to be able to organize enterprise objects into categories which users can
browse, or search via keywords. This is common in many kinds of applications, including
content management, portal, workflow, knowledge management and publishing applications.

WireHose was developed specifically to solve these types of problems.

However, once you get a good feeling for what WireHose can do for you, you'll recognize
many other scenarios where WireHose can save development time and help create a richer
user experience. WireHose provides a powerful toolset which you can use to unify widely
varying data such as customer information, email messages or catalog items, in a consistent

interface.

Resources

WireHose extends WebObjects so you can create enterprise objects which can be tagged with
categories and searched by keywords. Objects are defined as "taggable" and/or "indexable".

By convention, objects which are both taggable and indexable are referred to as "resources".

The taggable and indexable capabilities are defined as Java interfaces, called WHTaggable
and WHIndexable, respectively. WireHose uses this approach so they can be added to any
enterprise object class —— even ones you've already modeled and implemented —— by adding a

few relationships and implementing these interfaces.
WireHose provides an assortment of objects and methods which fetch and manage objects

which implement a particular interface, rather than those of a specific entity, so any code

written to work with one type of taggable object will work with all taggable objects.

Developing Applications with WireHose (Mac OS X) 15

WireHose business logic concepts

Tags

Tags are enterprise objects which can be arranged in an arbitrary hierarchy and assigned to
taggable objects. A taggable object can have any number of tags. Tags can be arranged into
any hierarchy required. Each tag has a parent tag, and most tags have child tags. (A top tag is
its own parent.) WireHose provides methods for retrieving a tag's ancestors, relative
ancestors, descendents, relative descendents and leaf descendents.

A tag can be uniquely identified by its tagpath, which is a slash—delimited string indicating its
position in the hierarchy. For example, the tagpath "Cats/Black Cats/Budu" identifies the tag
named "Budu". You use static methods in the WHTag class create and retrieve tags, and
assign them to taggable objects.

Note: You can subclass WHTag to implement access control, workflow or other special applications. For

example, the WireHoseEngageSupport framework defines several WHTag subclasses which implement

roles—based access control for taggable objects —— including WHEngageTag, which defines tags that are
taggable.

Personalization

Users

WHUser is the parent entity for all WireHose users. The login "guest” is reserved for the
guest user, which is who users are until they login. Guest users are generally created and
retrieved automatically; you can override the default guest user creation behavior through a
delegate method.

Developing Applications with WireHose (Mac OS X) 16

WireHose business logic concepts

Channels

Channels are defined by the WHChannel interface. Each user may have one or more
channels, which represent objects which have been personalized, such as fetchers, polls, stock
trackers, etc. WireHose also defines global channels, which belong to all users. WHUser

provides several methods for filtering global and user channels.

Channels belong to individual users, and each channel keeps a reference to the factory which
created it. Channels are bound to a specific area on the user's page through the areaName
property; the default area name is "main."

The order in which channels appear within an area is determined by the channel's

importance property; channels with lower importance appear before higher importance.

Subclasses of WHUser can override the allUserChannels method to include channels which

are not modeled as part of the base "channels" relationship.

Channel factories

Channel factories, defined by the WHChannelFactory interface, are objects which create
channels for users. Typically these are created by an administrator and contain appropriate
preset values, and are presented to users in a checkbox list. They are also often used to cache
expensive calculations or database fetches. They can also be used to provide default settings
for channels that can be overridden on a per-user basis.

Fetchers

Fetchers fetch resources from a remote source, such as a database or web service. Fetches are

considered expensive operations, so fetchers cache the results of their fetches.

WireHose provides several classes which work together to fetch and cache objects, and uses
notifications to ensure that caches are invalidated when necessary. Often when working with
fetchers, you will be fetching objects which support a particular interface such as
WHTaggable, so fetchers provide methods to filter the returned objects based on entity or

interface names.

Developing Applications with WireHose (Mac OS X) 17

WireHose business logic concepts

There are several types of fetchers which act as channels for users. The most commonly used
fetchers in WireHose are those that retrieve taggable and indexable objects based on optional

and required tags and keywords.

Developing Applications with WireHose (Mac OS X) 18

Getting started

The first thing you'll do is create the Hello World project. WireHose includes Project Builder
templates which include the default frameworks and files needed by all WireHose

applications.

The next step will be to set up the database for Hello World. This document includes specific
instructions for setting up OpenBase or FrontBase, but you can use any database supported by

WebObijects.

Before you begin

Before creating any WireHose projects, be sure you have done these steps:

1. Install WireHose on your system.

2. Copy the WireHoseExtras folder to your hard drive (for example, in your home
directory).

3. Copy the contents of WireHoseExtras/Developer to ~/Developer. This folder
contains Project Builder templates for creating WireHose applications, frameworks,

components, and more.

Creating the project

Now you'll create the project. WireHose includes Project Builder templates which include the

default frameworks and files needed by all WireHose applications.

1. Launch Project Builder, and choose New Project... from the File menu.

2. Scroll down to WireHose Application template, and click Next.

Developing Applications with WireHose (Mac OS X) 19

Getting started

08
New Project

CoreServices Tool 2
Foundation Teol
Standard Tool
¥ WebObjects
Cocoa Enterprise Objects Application
Direct To Java Client Application (Three Tier)
Direct To Web Application
Direct To Web Services Application
Display Croup Application
Enterprise JavaBean Framework
Java Client Application (Three Tier)
WebObjects Application

Assistant

WebObjects Framework
¥ WireHose

WireHose Apalication 4
WireHose Framew! Y
This project builds an HTML WebObjects application that links to the core WebObjeats

and W se fr. 5. The project plate includes Wrapper and MainPage
components, and a layout dictionary,

(Gancel) proviovs) (@R

3. Name the new project "HelloWorld", and click Finish.
4.1f you are asked "Some of your project settings need to be updated for the latest
version of WebObjects. Would you like to update them now?", click OK.

Project Update
| Some of your project settings need to be updated for
3 the latest version of WebObjects. Would you like 10

update them now?
Cana) 06D

Creating the database

The WireHose frameworks are designed to work with any database supported by

WebObjects, and offer several features to make cross—database development and deployment
easier.

This document includes specific instructions for setting up OpenBase or FrontBase, but you
can use any database supported by WebObjects. See the WireHose documentation more
information on using WireHose with other databases.

Developing Applications with WireHose (Mac OS X) 20

Getting started

Setting up OpenBase

1. Launch OpenBaseManager.

086 OpenBase Manager = (=X
CPRITDOuEE D
X0) o

*Remote Networks

Database Host
Hostname: locathost

ipaddress: 127.0.0.1

{ Configure Host

2.Choose New... from the Database menu.
3. Name the database HelloWorld, and click Set.

Configure Database

e OPENBASE SQL

Database Name: { Helloworld |

Run on Host: [|ocalhost oy

Port Number: _AUTOMATIC-

() Start Database at Boot
) Encrypt Communications
[Enable Change Natification

: Cenerate Replicated Keys

(o) @5

4. Choose Start from the Database menu.
5. Choose Run SQL Script from the Tools menu.
6. Select WireHoseBase.sql in the WireHoseExtras/SampleData/OpenBase/ folder,

and click Open.

Running Database Script

é OPENBASE SQL

Running Database Script...
T T e e e e W

Developing Applications with WireHose (Mac OS X) 21

Getting started

Setting up FrontBase

1. Launch FrontBaseManager.

8060 Monitored Databases o
& b = eo
68 W|E Q Qo =D
T Start t New Delere Monior 1 View
Database Host Port Status kA

2.Choose New Database... from the File menu.

3. Create the database on localhost, call it HelloWorld, and click Create.

T © O New Database on localhost

&

Host: localhost

Database Name: Helloworld

S Start database when computer starts

4, Select the HelloWorld database in the Monitored Databases window, and click
Connect.
5. Select the user _system, and click Open.

200 Open Database

localhost » HelloWorld m

« »{

Host: localhost

Use: [Database Name I‘t-!
Database: W

User: | _system I
Password:

DB Password:

(Cancel)

6. Select User in the connection pane, and click New User.

7. Set the user name to HelloWorld and click Create.

Developing Applications with WireHose (Mac OS X) 22

Getting started

200 Helloworld on localhost as _system
Connection Pane User Name: [ereHosel 1 !
BGCRIID e - -
Black & While List Default Schema: @ Create Default Schema
Database O NS ey
License
Schema Password:
Schema Ovjects Verfiy:
Session
SCL Intergreter
Table Cache
Usage { cancel =) @
User
{ Newuser) 7 ¢ € edituser) |
Repeatable Read, Read Write, Deferred, Auto Commit us/Paclfic |

1 i
8. Close the connection window.

9. Select the HelloWorld database in the Monitored Databases window, and click
Connect.
10. Select the user HelloWorld, and click Open.

C0O Open Database

kocalhost » HelloWorld m

« »{

Host: localhost

: [Database Name 1%

Use
Database: Hellowerld

User: | WireHose| e

Password:

DB Password:

{ Cancel) @

11.Select SQL Interpreter in the connection pane, and click Execute File.
12. Select WireHoseBase.sql in the WireHoseExtras/SampleData/FrontBase/ folder,
and click Open.

000 Helloworld on localhost as WireHose

| Connection Pane * Unique History
Backup

Black & White List
Dalabase
License

Schema

Schema Objects
Session

SQOL Inferpreler
Table Cache
Usage

User

{ executeFile) [fxecurte SQL

Repeatable Read, Read Write, Deferred, Auto Commit US/Pacific
4
e —

Developing Applications with WireHose (Mac OS X) 23

Getting started

13.Close the connection window.

Configuring Hello World for the database

The WireHose frameworks are database independent; a WireHose application can use any
database which is compatible with WebObjects. There are two primary techniques which are

used to achieve this: replacing the adaptor dictionary, and the use of attribute prototypes.

Note: For maximum performance, WireHose fetchers use custom SQL, some of which may be incompatible
with some databases. Use of this SQL can be controlled by several system properties. In general, any
database which supports subselects should work properly with WireHose, though databases that support
SQL set operators such as INTERSECT and EXCEPT (or MINUS) will perform better.

The adaptor dictionary

Each EOModel in a WebObjects application contains information in its index.eomodeld file
called the "connection dictionary”, which tells WebObjects which database on which host to

connect to, which JDBC driver to use, etc.

WireHose can replace the database adaptor and connection dictionary on the fly when each
EOModel is loaded. This allows you to switch between multiple databases by specifying a
different adaptor dictionary on the command line when launching your application, as, for

example, during development versus deployment.

An adaptor dictionary file is plain text in plist format, with two keys, "adaptorName" and
"connectionDictionary"”. There are sample adaptor dictionaries for FrontBase, OpenBase and

Oracle located in the WireHoseExtras/SampleData/sql directory.

Note: You can use the WHAdaptorDict property to specify the name of the adaptor dictionary to use at
runtime. You can specify either the name of an adaptor dictionary in your application's Bundle Resources,
or the full pathname to the desired file.

To set up the adaptor dictionary for Hello World:

Developing Applications with WireHose (Mac OS X) 24

Getting started

1. Select the adaptorDict.plist file in the Resources group in the Files pane in the
Hello World project.

000 . Helloworld - adaptorDict.plist =5
N80 ® QCwwed > ubDRFdHd
@ Croups & Files | =
VI3 nielloworid ! =\l nd iy b o ool ohoginfymni acs et
> [Classes | © (9 adaptorDict.plist:1 2 = = 2000
» [Entities | {
» [Web Components i cdoptortiose = J0EC;

connectiondicticnary « {
JURL = " idociFrontBoses// Loco Ihost/Hal lovor Ld/user=He | lodor 1d* ;
/ldriver = "jdoc.Frontloze .FBXriver®;

v £ Resources
(5] layoutDict.plist
[£) propertyBinders.pli

JURL W "Jdocioperbese://127.0.9. el iokor Lat;

ocooco

_ Properties Jleriver = “com.cpertcte, jobe 0oDriver®;
¥ WOAfile.icns plugin = **;

> £ Web Server Resources. usernone = 773

» {3 Framewarks - possvord a 73

» £ Docurnentation) '

» (3 Products

kﬂumdnnmq A SWOIEL@ SUrwoog(§ 4 SISSED S

2. Uncomment the appropriate lines for your database.

If you're using OpenBase:

URL = "jdbc:openbase://127.0.0.1/HelloWorld";
driver = "com.openbase.jdbc.ObDriver";

If you're using FrontBase:

URL = "jdbc:FrontBase://localhost/HelloWorld/user=HelloWorld";
driver = "jdbc.FrontBase.FBJDriver";

Developing Applications with WireHose (Mac OS X) 25

Getting started

Database and prototype frameworks

The WireHose Application project template automatically includes references to OpenBase
and FrontBase-specific frameworks. You'll need to add the frameworks for your database to

the Application Server target so they'll get loaded at runtime.

All WireHose—-specific entity attributes are defined by a handful of attribute prototypes.
Using prototypes allows you to change the definition of every WireHose entity in a single
place, no matter which model or framework they reside in (including entities defined in the
WireHoseBase framework).

See Apple's Using EOModeler documentation for details about creating prototype definitions.
It is a convention in WireHose applications to place the prototypes model in a framework, so
that adding this framework to any application will cause WebObjects to use your prototype

definitions instead of the ones defined in the WireHoseBase framework.

Note: To use a prototypes framework in a command-line tool, make sure there is entry in your classpath
which points to the prototypes framework directory as there won't be a jar file to point to, e.g.,
"...[/Library/MyPrototypes.framework:..."

To add the database frameworks to Hello World's Application Server target:

1. Make Application Server the active target.
2. Expand the Frameworks group in the Files pane.
3. Expand the group for your database.

4. Check the boxes next to the frameworks for your database.

Developing Applications with WireHose (Mac OS X) 26

http://developer.apple.com/documentation/WebObjects/UsingEOModeler/index.html

Getting started
806

ESS -k

@ Groups & Files
¥ 5 Helloworld

#. HelloWorld - adaptorDict.plist (=X

> Pd b
\ QFind 4 AEBuild A DRun A WDebug A FCVS

» B2 Classes O (B adaptorictplist1 2 2000 |
» (2 Entities { ,
» [Web Components odaptoriase = JOEC;

connect orDictiorary = {

¥ B Resources JABL = *jcbeiFrentBose:// localhost/Hel LoWor Lé/user e | loWor 14" ;

v » |T) WHOpenBasePratd
L » [T} WireHoseWOBuilder8|
> ﬂ Documentation
> (3 Produas

: g:“::;:’";’"“ g] /fdriver = *jcbc.FrontBaze F8Xriver”;
ayouDict plist =i

v [2) propertyBinders.plist; EJ URL = "jccioperbose://127.9.0, 1/Hel lovor La* s |
£ Properties el driver = “com.cpenbose, jdbe (mOriver®; |
o ¥ woafile.icns { plugin = 73 |
o S samplerssreedsxmi| || usernase = **3 |
4 j rss20MappingModel | 3 " potsword = 3 I
» [Web Server Resources %' N * |
v (2 Framewarks E I
» 9 WebObjects I
» (3 wireHose | |
v 9 Fromgase @
e » () FrontBasePlugin.f & |
e » [F) WHFromBasePrarg |13 |
¥ 7 OpenBase b |
1 ,
v |
- |
g :
H s
¥, |
e —

If you're using OpenBase:

OpenBasePKPlugin.framework
WHOpenBasePrototypes.framework

If you're using FrontBase:

FrontBasePlugin.framework
WHFrontBasePrototypes.framework

5. Make HelloWorld the active target.

Developing Applications with WireHose (Mac OS X) 27

Modeling the data

The key step in developing any application is modeling the data, and WireHose applications
are no different. In this section you'll use templates to model RSS feeds and items as

enterprise objects which can be categorized by tags and indexed by keywords.

An XML mapping model will be used to extract items from an RSS feed. A list of sample

feeds is provided in RSS format, with each item representing a feed.

WireHose provides several utility methods to perform tasks such as fetching XML content
from remote URLs, and inserting resources into the database. You'll use these to write a feed

crawler, which will fetch feeds, extract items, and insert them into the database.

In its purest form, an RSS feed contains a list of items, each of which has a title, link and
optional description. There is often much more information available in the feed, such as the
date each item was published, but to keep this application simple, Hello World will only deal

with titles, links and descriptions.

Modeling feeds

WireHose includes Project Builder templates to create new resources from scratch, which is
the approach we'll take in this tutorial. See the reference documentation for WHTaggable and

WHIndexable for details about adding support to existing enterprise objects.
Creating RSSFeed

1. Expand the Entities group in the Files pane.
2.Choose New File... from the File menu. Scroll down to the WireHose Resource

template and click Next.

Developing Applications with WireHose (Mac OS X) 28

Modeling the data

006 Assistant

New File

Java Client Interface
¥ WireHose

Adaptor Dictionary
Channel

Channel Editor
Channel Renderer
Direct Action
Laycut Dictionary
Page

Properties File
Property Binders File

Resource Editor

Resource Renderer
Strings File -
L Wrapper v

An enterprise object which can be categorized by tags and indexed by keywords.

Cancel { Previous \ @
£

3.Name it RSSFeed, add it to the Application Server target in the Hello World project,

and click Finish.

o0 Assistant
54
New Resource
File Name: {RSSFeed }
Location: ~/Desktop/Helloworld (Choose...)
A 1o Project={ HelloWor d W "
Targets: O @ Helloworld
¥ @ Application Server

O @ web Server

Ceancel 3 (orevious) (EFinish)
A

4. Open the RSSFeed.eomodeld file in EOModeler.
5. Choose Set Adaptor Info... from the Model menu.
6. Set the URL and driver as entered in your adaptor dictionary:

‘266 JDBC Connection

Username:

Password:

URL: jdbc:FrontBase:/ flocalhost/HelloWorld
user=HelloWorld

Driver: | idbe.FrontBase. FEIDriver] i

Plugin:

¢ Cancel) Ok)

Developing Applications with WireHose (Mac OS X) 29

If you're using OpenBase:

Modeling the data

Set the URL to jdbc:openbase://127.0.0.1/HelloWorld and the driver to

com.openbase.jdbc.ObDriver

If you're using FrontBase:

Set the URL to jdbc:FrontBase://localhost/HelloWorld/user=HelloWorld and the

driver to jdbc.FrontBase.FBJDriver
7.Click OK.

8. Change the name of the MyResource entity to RSSFeed, its table to RSSFeed, and

its class name to RSSFeed.

9. Change the name of the MyResourceKeyword entity to RSSFeedKeyword, and its

table to RSSFeedKw.

10.Change the name of the MyResourceTag entity to RSSFeedTag, and its table to

RSSFeedTag.

00 & ~/Desktop/Helloworld/RSSFeed.eomodeld

= .Xﬁ)ﬁ“) 08 EH IR

RSSFeed Name Parert Table
=
oL -~ LELELT] RSSFeed VHNonSveamingReso RSSFeed
WO RSSFeedkepvied RSSFeedKeyward WHR, Keyword RSSFeedKw
DO RSSFeedlay
L) strnd Procedwes RSSFeedTag WHResourceTag RSSFeedTag
&9 H» Add Column.

Class Name

RSSFeed

EOGenericRecord
comwirehose base. WHReso!

Developing Applications with WireHose (Mac OS X)

30

Modeling the data
Adding attributes

The new resource template includes several attributes which are part of the WHTaggable and
WHIndexable interface. The dateAdded attribute is common to both interfaces, and allows
users to search for recently inserted resources. The indexed property and the
resourceKeywords and keywords relationships provide the ability to search by

keywords, while resourceTags is used to provide a to—many relationship to available

tags. The affiliate attribute is an optional convention which allows partitioning

WireHose resources, channel factories, tags and other objects into groups.

First you'll model the RSSFeed's title. We're calling it "name” instead of "title" because it's a

convention for WireHose resources to have a name, if possible.

1. Select the RSSFeed entity.
2.Choose Add Attribute from the Property menu.
3. Set its prototype to whString255.

Note: The whString255 prototype defines a column of type CHAR(255). You can safely redefine
all the whString prototypes to be VARCHAR columns of any size. See the WHEnterpriseObject
reference for details.

4. Remove the padlock icon so this attribute isn't used for locking.

5. Set the attribute's name to name, and set its column name to NAME.

@00 o ~/Desktop/HelloWorld/RSSFeed.eomodeld
E: B BaXoXYW0S8BEH TR
BIRsSFeed T HSSrees AnDutes
onssn“ o~ ¢ 0 & Name Columa Prototype External Type Widy
®
SO RSSEeedKepveed . v dateAdded DATEADDED whTimestan & daloty
P RGSFeadlag e v indexed INDEXED whBoolean® 4 char
L~ B
) Stoewd Procedwes . & rosourceld RESOQURCEID whinfegeriD &
P name NAME whString25¢ 3 char
P affiliate AFFILIATE whString32* & char
Add Column. [yaiv
RSSF eed Reistionships =
| * & Name Destination Source Att Dest Att
» o = keywords WHKeyword
» resowceKeywords RSSFecaKeyword resowrceld resourcel
» ¢ = resourceTags RSSFeedTag resourcelD resourceil
(———MBEIC M C IR

Developing Applications with WireHose (Mac OS X) 31

Modeling the data

Next, you'll model the RSSFeed's link.

1. Choose Add Attribute from the Property menu.
2. Set its prototype to whString255.
3. Remove the padlock icon so this attribute isn't used for locking.

4. Set the attribute's name to link, and set its column name to LINK.

Next, you'll model the RSSFeed's description. Since "description" is a reserved word in

WebObijects, it's a WireHose convention to name the attribute "textDescription".

1. Choose Add Attribute from the Property menu.

2. Set its prototype to whString255.

3. Remove the padlock icon so this attribute isn't used for locking.

4. Set the attribute's name to textDescription, and set its column name to TEXTDESC.

There are a number of other attributes defined in the RSS 2.0 specification which we are not
modeling here for simplicity's sake. However, we will model some more attributes which will

be used in the Hello World application.

The first is a "lastFetchDate" property, which is the date the items from a feed were last

imported.

1. Choose Add Attribute from the Property menu.

2. Set its prototype to whTimestamp.

3. Remove the padlock icon so this attribute isn't used for locking.

4. Set the attribute's name to lastFetchDate, and set its column name to LASTFETCH.

Since there are several versions of RSS, some feeds may be valid but not supported by Hello
World. The last attribute you'll model is a boolean indicating whether or not the feed was

valid the last time we fetched, so the crawler can skip those feeds the next time.

1. Choose Add Attribute from the Property menu.
2. Set its prototype to whBoolean.

Note: There is no standard way to store booleans in a database; some support BOOLEAN
columns, while others may store a "Y" or "N" in a CHAR(1) column, or a zero or one in an
INTEGER. WireHose provides the whBoolean prototype and several utility methods which make

Developing Applications with WireHose (Mac OS X) 32

Modeling the data

it easy to deal with varying definitions for boolean attributes in a transparent fashion.

3. Remove the padlock icon so this attribute isn't used for locking.
4, Set the attribute's name to lastFetchlnvalid, and set its column name to
WASINVALID.

Note: Your Java code will actually call methods named lastFetchWasinvalid and
setLastFetchWaslinvalid.

@00 o ~/Desktop/Helloworld/RSSFeed.eomodeld
=
= BRUXY 085 SIS DD
— T HSSHeeo Altnbutes
B{R5SFeed r >
ORSSF“G o~ ¢ 0 & Name Columa Prototype External Type Widy
gopssp..axgﬁw e v daeAdded DATEADDED whTimestar 3 datelime .
:%)ORSS'eedh; P indexed INDEXED whBoolean® 3 :
Q) RoredProcedwes - & resourceld RESOURCEID whintegerlD & int .
P lastFelchinvalid WASINVALID whBoglean® 4 char]
P atfiliate AFFILIATE whString32° 3 char H
P lastFeichDale LASTFETCH whhmcsl:m; datetime]
P link LINK whString258 4 char s
PO name NAME whsmnq255: char H
P textDescripson TEXTDESC whString258 3 char H
Add Cohumn. Ce——— pai>
RSSFeed Relntionships —
T e & Name Destination Source Att Dest Att
» o 7= keywords WHKeyword
» resowceKeywords RSSFecdKeyword resowrceld resourcell
» ¢ = resourceTags RSSFeedTag resourcelD resourcell
e || » v ¢ S REIE

Uniquing items

Next you'll tell WireHose which attributes should be used to distinguish one feed from
another during importing. In this case, duplicate feeds have either the same name or link.

1. Select the RSSFeed entity.

2. Choose Inspector... from the Tools menu.
3. Select the EOEntity UserInfo pane.

4. Click Add.

5. Set the key name to WHKeysForUniquing, and its value to (link, name).

Developing Applications with WireHose (Mac OS X) 33

Modeling the data

006 EOEntity Userinfo Inspector
| i
Se il

Tkey value

WHKeysForUniquing (link, name)

"{link. name)

T e TV S
{ Remove Add)

Modeling items

You'll use the same techniques to model the RSSItem entity as you did for RSSFeed. Since
the two share some common attributes, you'll be able to copy and paste them to save some

time.

Creating RSSltem

Note: The new resource template creates a new EOModel for each resource entity. You can leave each
entity in a separate model file, or merge them into a single model by copying and pasting the entities. For

this tutorial we'll leave them in separate models.

1. Select the Entities group in the Files pane in Project Builder.

2.Choose New File... from the File menu. Scroll down to the WireHose Resource
template and click Next.

3.Name it RSSltem, add it to the Application Server target in the Hello World project,
and click Finish.

4. Open the RSSItem.eomodeld file in EOModeler.

5. Choose Set Adaptor Info... from the Model menu.

6. Set the URL and driver as entered in your adaptor dictionary:

If you're using OpenBase:

Developing Applications with WireHose (Mac OS X) 34

Modeling the data

Set the URL to jdbc:openbase://127.0.0.1/HelloWorld and the driver to
com.openbase.jdbc.ObDriver

If you're using FrontBase:

Set the URL to jdbc:FrontBase://localhost/HelloWorld/user=HelloWorld and the
driver to jdbc.FrontBase.FBJDriver

7.Click OK.

8. Change the name of the MyResource entity to RSSltem, its table to RSSItem, and
its class name to RSSltem.

9. Change the name of the MyResourceKeyword entity to RSSFeedKeyword, and its
table to RSSIltemKw.

10.Change the name of the MyResourceTag entity to RSSltemTag, and its table to

RSSltemTag.

Adding attributes

Since RSS feeds and items both contain titles, links and descriptions, you can copy and paste

the attribute definitions from the RSSFeed entity into RSSltem.

1. Switch to RSSFeed.eomodeld.
2. Select the RSSFeed entity.
3. Select the link, name and textDescription attributes.

000 @ ~/Desktop/HelloWorld/RSSFeed.eomodeld
E: BRIXY 08D TSI
T HSSHeesAlnbues
g:;;;:“ 4 ‘:bo 0 & Name Columa Prototype External Type
A RSSFeedKepvied e ¥ daleAdded DATEADDED whTimestan 3 datetime
‘j[]ORSS'udh; P indexed INDEXED whBoolean* 3 char
) Stoewd Proceduey o= & resourceld RESOQURCEND whintegeriD & int

P affiliate AFFILIATE whString32* & char

e ¥ lasiFelchDate LASTFETCH whTimeslarr 3 datetime

o v lasiFeichinvalid WASINVALID whBoolgan® 3 char H

3 texiDascripson - TEXTDESC whString25¢&

Add ColumnY. — T
RSSFeedRelstionstips —
* & Name Destination Source Att Des
» o = keywords WHKeyword
» resowceKeywords RSSFecdXeyword resourcelD s
» o = resowceTags RSSFeedTag resourcelD res

Developing Applications with WireHose (Mac OS X) 35

Modeling the data

4. Choose Copy from the Edit menu.

5. Switch to RSSitem.eomodeld.

6. Select the RSSltem entity.

7.Choose Paste from the Edit menu.

8. Remove the padlock icon from the textDescription, link and name attributes so they

won't be used for locking.
Uniquing items

Next you'll tell WireHose which attributes should be used to distinguish one item from
another during importing. This is important since new items will typically be added to the top
of the feed, pushing older items off the bottom. If Hello World's crawler didn't have a method
for determining if it had already seen an item, the database would be cluttered with

duplicates.
In this case, duplicate items have either the same name or link.

1. Select the RSSltem entity.

2.Choose Inspector... from the Tools menu.

3. Select the EOEntity UserInfo pane.

4. Click Add.

5. Set the key name to WHKeysForUniquing, and its value to (link, name).

EOEntity Userinfo lnspec(or

key value
WHKeysForUniquing (link, name)

"{link. name)

‘Remove\ (Add)
e——

Developing Applications with WireHose (Mac OS X) 36

Modeling the data

Note: The RSS 2.0 specification allows feed providers to provide an optional attribute for each item, called
"guid”. This globally unique identifier is specifically intended help aggregators determine if an item has
been seen previously, but not all feeds use it. For simplicity, we are ignoring this attribute in this tutorial.

Relating feeds and items

Now you'll model a one—to—many relationship between feeds and items, so that each feed has
multiple items, and each item has a single feed.

Note: Another way to model this relationship would be to model RSSFeed as a subentity of WHTag which
would implement the WHTaggable and WHIndexable interfaces. Creating resource types which can be used
to tag other resources is a very powerful technique, but beyond the scope of this tutorial.

Relating items to feeds

First you'll add a "feedID" attribute to RSSltem.

1. Select the RSSltem entity.
2. Choose Add Attribute from the Property menu.
3. Set its prototype to whintegerID.

Note: By convention, all primary key attributes in a WireHose application use the "whintegerID"
prototype, except for WHTag, which uses "whBinarylD". Both these prototypes are defined as
INTEGER columns by default.

WireHose provides special support for using binary primary keys. WireHose will generate them
for you, and encode a reference to the entity directly in the primary key itself. This can improve
performance by avoiding extra fetches when resolving to—one faults against abstract entities.

4. Remove the padlock icon so this attribute isn't used for locking.

5. Remove the diamond icon so this attribute isn't a class property.

6. Check the "Allows null* column so this attribute can be null

7. Set the attribute's name to feedID, and set its column name to FEEDID.

Next, add the relationship.

1. Choose Add Relationship from the Property menu.

Developing Applications with WireHose (Mac OS X) 37

Modeling the data

2.Choose Inspector... from the Tools menu.
3. Set the relationship type to To One.
4. Change the destination model to RSSFeed.

Note: You may need to quit and relaunch EOModeler to see RSSFeed in the destination model
popup.

5. Change the destination entity to RSSFeed.

6. Set the source attribute to feedID, and the destination attribute to resourcelD.

7.Click Connect.
8. Change the relationship's name to feed.

0Ce Relationship Inspector

Name: | feed

Destination
Model:
Entity: RSSFeed

® To One
O To Many

[ianer L:)

Joins
Source Altributes Destination Atbutes
affliale I

daleAdded indexed

feediD lastFelchDate

indexed lastFelchinvalid

link ot ifink

A name

v resourcelD (204
e

(Disconnec)

Q(—— 3]

name
rasoaireain

Relating feeds to items

Now you'll add the inverse relationship.

1. Switch to RSSFeed.eomodeld.

2.Choose Add Relationship from the Property menu.
3. Choose Inspector... from the Tools menu.

4. Set the relationship type to To Many.

5. Change the destination model to RSSltem.

Note: You may need to quit and relaunch EOModeler to see RSSltem in the destination model

popup.

6. Change the destination entity to RSSItem.
7. Set the source attribute to resourcelD, and the destination attribute to feedID.

Developing Applications with WireHose (Mac OS X) 38

Modeling the data

8. Click Connect.
9. Change the relationship's name to items.

eCce Relationship Inspector
BEm

Name: items

Destination

Model:
Entity: RSSkem
O To One
® To Many
Cianee bo
Joins
Souse Allributes Destination Atbutes
TACATICT ~ affiliate
indexed dateAdded
lastFoxchDate feedID <
lastFexchinvalid indexed
tink < link a
name * name
resourceld €LY rmenimain =
{ Disconnec

Generating SQL and Java

Next you'll generate the SQL and Java for the RSSFeed and RSSItem entities. The Java

classes will inherit from WHConcreteResource, which is a default implementation of the

WHTaggable and WHIndexable interfaces.
Generating SQL and Java for feeds

1. Switch to RSSFeed.eomodeld.
2. Select the RSSFeed, RSSFeedKeyword and RSSFeedTag entities.

3. Choose Generate SQL... from the Property menu
4. Turn on the Create Tables, Primary Key Constraints and Foreign Key

Constraints options, and uncheck everything else.

5. Click Execute SQL.

Developing Applications with WireHose (Mac OS X) 39

Modeling the data

‘000 SQL Generation
~ SQL Generation Options —
__ Drop Database _J Create Database
[Drop Tables E Create Tables

E Primary Key Constraints
8 Foreign key Constraints |
[Drop Primary Key Support] Create Primary Key Support

CREATE TABLE RSSFeed (AFFILIATE chan32) . DATEADDED m
datetime , INDEXED char(1}, LASTFETCH datetime , m
WASINVALID char(1) , LINK char(255) , NAME char(255) ,
RESOURCEID int NOT NULL, TEXTDESC char(255)):

CREATE TABLE RSSFeedKw (KEYWORDID int NOT NULL,
RESOURCEID int NOT NULL);

CREATE TABLE RSSFeedTag (DATEADDED datetime |
RESOQURCEID int NOT NULL. TAGID int NOT NULL):

ALTER TABLE RSSFeed ADD PRIMARY KEY (RESOURCEID):

create unique index RSSFeed RESOURCEID;

«»l

create index RSSFeed RESOURCEID;

6. Close the SQL Generation window.
7. Select the RSSFeed entity

8. Choose Generate Java Files... from the Property menu.

Template Generation:
(" Class template for RSSFeed already exists:
«.
(overwrite) (saveas) m

9. Click Overwrite.
10.0Open RSSFeed.java in Project Builder.
11.Add this line:

import com.wirehose.base.*;

12.Change the class declaration to:

public class RSSFeed extends com.wirehose.base.WHConcreteResource

13. Add this method so feeds are inserted into the database with a lastFetchDate in
the past:

public void awakeFrominsertion(EOEditingContext ec) {
super.awakeFromlinsertion(ec);
setLastFetchDate(new NSTimestamp(0));
setLastFetchWaslnvalid(false);
}
14.To take advantage of the boolean attribute support in WireHose, add these two

methods:

Developing Applications with WireHose (Mac OS X) 40

public boolean lastFetchWaslInvalid() {

Modeling the data

return WHEnNterpriseObject.storedBooleanValueForKey(this, "lastFetchinvalid");

public void setLastFetchWaslnvalid(boolean value) {

WHEnterpriseObject.takeStoredBooleanValueForKey(this, value, "lastFetchinvalid");

}

15.Then change the lastFetchValid and setLastFetchValid methods so they

accept and return instances of java.lang.Obiject:

public Object lastFetchinvalid() {
return storedValueForKey("lastFetchinvalid™);

public void setLastFetchinvalid(Object value) {

takeStoredValueForKey(value, "lastFetchinvalid");

806

“480¢ 0

@ Groups & Files

oo oo ooo

oo

e
o

8. Helloworld - RSSFeed.java

o

v B Helloworld
v [Classes
_i] Application.java
[3) session jiva
[J] Directaction java
v (3 Entities
v £3 RsSFeed

v (3 RSSitem
[3) RsSthtem java
© RSSitem.comed
» 9 Web Components
v 9 Resources
[£) adaptorDict.plist
(5] layourDict.plist
[2) propertyBinders.pli
2 Properties
¥ WOAfile.lcns
> [Web Server Resources
v 9 Framewarks
» £9 WebObjects
» 2 WireHose
v P FromBase
» [r) FrontBasePlugln. \.
b [T} WHFrontBasePro *
w E9 DnenRace 4

Build succeeded

LSWodNTIE e 4 SWOIEL@ , SUCWR00Z () 4 SIS

[[|

& D

L QFind 4 ABuild 4 SRun 4 "I Debug A

Jovs

/7 Feleed. Java
// Crected on ¥ed Jul 99 23:50:50 US/Pocific 2093 by Apple EQModeler

© © [J)RSSFeedjava27 3 class RSSFeed 2

Versien 5.2

ieport com.webobjacts.foundation.d;
thport com.webodjects.eccontrol .
(eport jovo.soth Sighecimal;
isport jovo.util.*;

tnport cow.wirehoze base.¥;

pbLLc closs RSSFeed extends VHConcreteResource {

public RSSFead() {
super();

public void Mm!nseruon([ttmtmﬁmtm ec) {
super .oudkeFroalnsertion{ec
sotlostFetcroate(rev nsnmum(e))

public boolean lastFetchwWesinvalid() {
yeturn 15e0bject .stor
*lostFatehlrmal id®);
}

public vold setlastFetchosTnvel1d{ooolean value) {
WHEnterpriselbject tokeStoredBoo learalusForkey(this, valus,
“lastFetchlrvatic®);

sForkey(this,

o

000

b T

Developing Applications with WireHose (Mac OS X)

41

Modeling the data

Generating SQL and Java for items

1. Switch to RSSItem.eomodeld.
2. Select the RSSItem, RSSltemKeyword and RSSltemTag entities.
3. Choose Generate SQL... from the Property menu
4. Turn on the Create Tables, Primary Key Constraints and Foreign Key
Constraints options, and uncheck everything else.
5. Click Execute SQL.
6. Close the SQL Generation window.
7. Select the RSSltem entity
8. Choose Generate Java Files... from the Property menu.
9. Click Overwrite.
10.0pen RSSltem.java in Project Builder.
11.Add this line:

import com.wirehose.base.*;

12.Change the class declaration to:

public class RSSltem extends com.wirehose.base.WHConcreteResource

Developing Applications with WireHose (Mac OS X) 42

Importing feeds

In this section, you'll write an importer which will insert information about some RSS feeds
into the database.

There are a number of websites which provide information about available RSS feeds.
WireHose comes with a sample list of feeds collected from Syndic8.com. The list is provided
in RSS 2.0 format, so you'll be able to reuse portions of the feed importer code in the feed
crawler.

Sample feeds list

The first step is to add the sample feeds list to the Hello World project.

1. Expand the Resources group in the Files pane.

2.Choose Add Files... from Project menu.

3. Select SampleRSSFeeds.xml in the WireHoseExtras/SampleData/data/ folder, and
click Add.

4. Check "Copy items into destination group's folder (if needed)", add it to the
Application Server target, and click Add.

ECopy items into destination group's folder (if needed)

Reference Style: | Default (5]

Text Encoding: [Western (Mac OS Roman) m

® Recursively create groups for any added folders
(O Create Folder References for any added folders

~Add To Targets
‘& @relloworld

| ¥ @ Application Server
|2 @wedserver

C el) @R

The sample feeds file looks like this:

Developing Applications with WireHose (Mac OS X) 43

http://www.syndic8.com/

<?xml version="1.0" encoding="1SO-8859-1" ?>

<rss version="2.0">

<channel>

<title>WireHose Hello World RSS Feed List (from Syndic8.com)</title>
<link></link>

<description>Sample RSS feed list for WireHose Hello World tutorial</description>
<webMaster>support@bulldogbeach.com</webMaster>
<pubDate>2003-07-01</pubDate>

<buildDate>2003-07-01</buildDate>

<item>
<title>About.com Botany</title>
<link>http://ww.growinglifestyle.com/h117/index.rss</link>
<description>Latest articles at About.com Botany (from Growing Lifestyle).</description>
<category>Consumer/Gardening</category>

<[item>

<item>
<title>About.com Gardening</title>
<link>http://www.growinglifestyle.com/h106/index.rss</link>
<description>Latest articles at About.com Gardening (from Growing Lifestyle).</description>
<category>Consumer/Gardening</category>

</item>

</channel>

</rss>

Developing Applications with WireHose (Mac OS X)

Importing feeds

44

Importing feeds

XML mapping model

Mapping models are used to translate XML data to objects. For importing new resources into
the database, the convention is to map the XML data to an array of NSDictionary objects
which represent snapshots of the individual items. For more information about mapping

models, see the WebObjects documentation.

1. Expand the Resources group in the Files pane.

2.Choose Add Files... from Project menu.

3. Select rss20MappingModel.xml in the WireHoseExtras/SampleData/maps/
folder, and click Add.

4. Check "Copy items into destination group's folder (if needed)", add it to the
Application Server target, and click Add.

Here's what the mapping model looks like. This mapping model specifies all the attributes in

an RSS 2.0 file, including the ones Hello World is ignoring. The attributes used by Hello
World are highlighted.

Developing Applications with WireHose (Mac OS X) 45

Importing feeds

<?xml version="1.0" encoding="iso—8859-1"?>
<model>

<entity name="NSMutableDictionary" xmITag="rss" unmappedTagsKey="unmappedTags">
<property name="channel" xmITag="channel"/>
<property name="version" xmlTag="version"/>

</entity>

<entity name="NSMutableDictionary" xmITag="channel" unmappedTagsKey="unmappedTags" >
<property name="name" xmlTag="title"/>
<property name="link" xmlTag="link"/>
<property hame="textDescription" xmITag="description"/>
<property hame="language" xmlTag="language"/>
<property hame="copyright" xmlTag="copyright"/>
<property hame="managingEditor" xmITag="managingEditor"/>
<property nhame="webMaster" xmITag="webMaster"/>
<property name="pubDate" xm|Tag="pubDate"/>
<property name="lastBuildDate" xmITag="lastBuildDate"/>
<property hame="tags" xmlTag="category" forceList="YES"/>
<property name="generator" xmlTag="generator"/>
<property name="docs" xmlTag="docs"/>
<property name="cloud" xmITag="cloud"/>
<property name="ttlI" xmITag="ttl"/>
<property nhame="image" xm|Tag="image"/>
<property hame="rating" xmlTag="rating"/>
<property hame="textInput" xmITag="textInput"/>
<property nhame="skipHours" xmITag="skipHours"/>
<property name="skipDays" xm|Tag="skipDays"/>
<property name="items" xmlTag="item" forceList="YES"/>

</entity>

<entity name="NSMutableDictionary" xmITag="image" unmappedTagsKey="unmappedTags">
<property name="url" xmlTag="url"/>
<property name="title" xmITag="title"/>

Developing Applications with WireHose (Mac OS X) 46

Importing feeds

<property name="link" xmlTag="link"/>
<property name="width" xm|Tag="width"/>
<property name="height" xmlTag="height"/>
<property name="description" xmlTag="description"/>
</entity>
<entity name="NSMutableDictionary" xmITag="cloud" unmappedTagsKey="unmappedTags">
<property name="domain" xmlTag="domain"/>
<property name="port" xmlTag="port"/>
<property name="registerProcedure" xmlTag="registerProcedure"/>
<property hame="protocol" xmITag="protocol"/>
</entity>
<entity name="NSMutableDictionary" xmITag="textinput" unmappedTagsKey="unmappedTags">
<property hame="title" xmITag="title"/>
<property nhame="description" xm|Tag="description"/>
<property nhame="name" xm|Tag="name"/>
<property name="link" xmlTag="link"/>
</entity>
<entity name="NSMutableDictionary" xmITag="item" unmappedTagsKey="unmappedTags">
<property name="name" xmlTag="title"/>
<property name="link" xmlTag="link"/>
<property name="textDescription" xmITag="description"/>
<property nhame="author" xmlTag="author"/>
<property name="tags" xmlTag="category" forceList="YES"/>
<property hame="comments" xmlITag="comments"/>
<property nhame="enclosure" xmlTag="enclosure"/>
<property hame="guid" xmlTag="guid"/>
<property nhame="pubDate" xm|Tag="pubDate"/>
<property nhame="source" xmlTag="source"/>
</entity>
<entity name="NSMutableDictionary" xmlTag="source" unmappedTagsKey="unmappedTags" contentsKey="description">
<property name="description" xmlTag="description"/>

Developing Applications with WireHose (Mac OS X) 47

Importing feeds

<property name="url" xmlTag="url"/>

</entity>

<entity name="NSMutableDictionary" xmITag="enclosure" unmappedTagsKey="unmappedTags">
<property name="url" xmITag="url"/>
<property name="length" xmlTag="length"/>
<property name="type" xmlTag="type"/>

</entity>

<entity name="NSMutableDictionary" xmITag="category" unmappedTagsKey="unmappedTags" contentsKey="id">
<property name="id" xmlTag="id"/>
<property hame="domain" xmlTag="domain"/>

</entity>

<entity name="NSMutableDictionary" xmITag="guid" unmappedTagsKey="unmappedTags" contentsKey="id">
<property nhame="id" xm|Tag="id"/>
<property nhame="isPermaLink" xm|Tag="isPermaLink"/>

</entity>

<entity name="NSMutableDictionary" xmlTag="enclosure" unmappedTagsKey="unmappedTags">
<property name="title" xmITag="title"/>
<property name="description" xmlTag="description"/>
<property name="name" xmlTag="name"/>
<property name="link" xmITag="link"/>

</entity>

</model>

Developing Applications with WireHose (Mac OS X) 48

Importing feeds

Fetching dictionaries

Now you'll start building Hello World's importer. This class will use the WHImporter utility

class to do most of its heavy lifting.

1. Expand the Classes group in the Files pane.
2.Chose New File... from File menu. Scroll down to the Pure Java Java Class template

and click Next.

00O Assistant

Objective-C NSWindowController subclass
¥ Pure Java

¥ WebObjects
Cocoa Enterprise Objects Interface
Component
Display Croup Component
Enterprise JavaBean
Java Class
Java Client Interface
¥ WireMose
Adaptor Dictionary
Channel
Channel Editor
Channel Renderer
Direct Action

A Java class file.

(Cancel) Chreviovs) (N

3. Name it Importer.java, add it to the Application Server target in the Hello World

project, and click Finish.

666 Assistant
v
New Java Class

File Name: | Importer.java J

Location: ~/Desktop/Helloworld { Choose...)
Add to Project: [HelloWorld — |

Targets: O @ Helloworld
¥ @ Application Server
O @ webServer

{ Cancel) { Previous) @

4. Add these lines to Importer.java

Developing Applications with WireHose (Mac OS X) 49

Importing feeds

import com.wirehose._util.*;
import com.wirehose.base.*;

5. Add this method:

public static void importFeeds() {

I/ fetch feeds list as dictionary

NSMutableDictionary rss = WHImporter.fetchDictionaryFromURL(
"SampleRSSFeeds.xml",
"Contents/Resources/rss20MappingModel.xml");

Il extract feeds from dictionary and clean up tags
NSMutableArray snapshots =
cleanSnapshots(rss.valueForKeyPath("channel.items"));

EOEditingContext ec = new EOEditingContext();
ec.lock();

try {

/l insert resources into editing context
WHImporter.insertResources(
ec, snapshots, "RSSFeed", "Feeds/", null,
WHImporter.IgnoreAndTag, true, true, true, true, false);

ec.saveChanges();

} catch (Exception e) {
System.out.printin("Error importing resources: "+e);
e.printStackTrace();

try {
ec.saveChanges();
} catch (Exception e) {
System.out.printin("Exception saving changes: "+e);

}

ec.unlock();
ec.dispose();

This method uses two methods from WHImporter. The first,
fetchDictionaryFromURL, takes two arguments which specify the location of

an XML file to be imported, and the mapping model which will turn the XML into a

Developing Applications with WireHose (Mac OS X) 50

Importing feeds

dictionary.

The other WHImporter method, insertResources, is a general-purpose utility
for inserting resources into a database. It takes several arguments which specify how
to handle resources which already exist in the database, whether or not to index

keywords for newly inserted resources, whether to add tags to resources, etc.

The arguments used here ensure that if a new resource already exists in the database,
the new resource will be ignored rather than inserted. If any tags are specified on the
new resource, those tags will be assigned to the already existing resource. This
handles the case where an identical resource has been imported multiple times in

multiple categories, by having only a single resource with multiple tags.

The "Feeds/" argument specifies a tag path prefix. Any categories described in the
feed will be appended to this string before being turned into tags. For example, if a
feed has an assigned category of "Consumer/Gardening"”, the tag used will actually be

"Feeds/Consumer/Gardening"”.

Cleaning snapshots

The mapping model does a fairly good job of translating the XML input into dictionaries, but
it has some quirks, and WHImporter's insertResources expects those dictionaries to be
in a particular format. The importer needs a cleanSnapshots method which will fix what

we get from fetchDictionaryFromURL.

1. Add this method:

static NSMutableArray cleanSnapshots(Object whatWeFound) {
NSMutableArray snapshots;

/I "forcelist" in the mapping model is unreliable
/I sometimes we get a single object, so pack it into an array
if (whatWeFound instanceof NSArray) {
snapshots = (NSMutableArray)whatWeFound;
}else {
shapshots = new NSMutableArray(whatWeFound);

}
Developing Applications with WireHose (Mac OS X) 51

Importing feeds

NSMutableDictionary snapshot;
NSKeyValueCoding tags;

/I iterate through snapshots

/I for each snapshot, extract tags from content key

for (int i=0, count=snapshots.count(); i<count; i++) {
snapshot = (NSMutableDictionary)snapshots.objectAtIndex(i);
tags = (NSKeyValueCoding)snapshot.objectForKey("tags");
if (tags != null) {

Il tags will be either a dictionary with one key "id"
/I mapping to a string indicating the tagpath,
/I or an array of dictionaries, each with an "id" key.

/I Calling valueForKey on an array will construct a new
/I array with the results of calling valueForKey on each
// object in the old array... nice.

/I So we end up with either a string, or an array of strings

snapshot.setObjectForKey(tags.valueForKey("id"), "tags");
snapshots.replaceObjectAtIndex(snapshot, i);

}

return snapshots;

The mapping model specifies that RSS items should be mapped to a list through its
forceList property. Sometimes the XML importer returns a single item instead of
a list, so this method will pack the object into an array.

The RSS 2.0 format specifies that <category> is a container element. The
contentsKey property in the mapping model specifies that the XML importer

should map a category to a dictionary with a single key, "id", which maps to the name
of the category itself. If an item has multiple category entries, then the importer will
return an array of dictionaries. The cleanSnapshots method extracts the category

(or categories) from the dictionary (or dictionaries).

Developing Applications with WireHose (Mac OS X) 52

Importing feeds

Enabling the importer

Next, we'll add a property that controls whether or not to import feeds at runtime, and actually

call the importer.

1. Select the Properties file in the Resources group in the Files pane, and add these

lines:

controls whether feeds are imported
when the application starts up
ImportFeeds = NO

000 8. Helloworld - Properties o

ARNB B @ @rowd > nRrdd

@ CGroups & Files
v 4 Hellowerld .
v (3 Classes
I

)

_ @QFind) ABuld 4 @Run , ADebug 4 I CVS
00 | Properties:14 ¢ S o 0 O
W 1 =N
WPort = 2020
VHierverkose « 127.9.9,.1:2000

java

3

(3] Session java
(i) DirectAction java
[3) Importer java
v 2 entities
v (3 RSSFeed
[J) RSSFeed java
D RSSFeed.comod WML [ntersectOperator = NO
v 9 RSSitem
[hsshem java 21| # certrols whether feeds are Luported
O RSSltem.eomode # vten the opplication starts up
» [web Components InportFeeds = O
v [Resources
[%) adaprorDict plist
[2) layoutDict plist
[5) propertyBinders.pli
__ Properties
¥ WOAfe.icns
_ SampleRSSFeeds.xn
. rss20MappingMede.
> [Web Server Resources
v [Framewarks
» (3 webObjects .~
» (3 WireHase *
w 9 FramRase M | B

o000

WhizcbleAutoSubintities = YES
WDLscblelayoutDictionaryCoching = YES
WDisebleShareddjectlonding « YES

oo
TR

@

o0

ooopooco
TUEw , SPOICL® 5y

2. Select Application.java in the Classes group, and uncomment this line in the

constructor:

NSNotificationCenter.defaultCenter().addObserver(
this, new NSSelector("initialize", new Class[] { NSNotification.class }),
WHApplicationHelper.ApplicationHelperDidFinishlinitializing, null);

WireHose provides an object called the WHApplicationHelper to handle
application—level behavior. Among other tasks, WHApplicationHelper handles
various initialization and setup tasks. Once it's done, it posts an
ApplicationHelperDidFinishlinitializing notification which indicates

that it's now safe to access WireHose tags and other data structures.

Developing Applications with WireHose (Mac OS X) 53

Importing feeds

3. Now add this method, which will be called in response to the notification:

public void initialize(NSNotification notification) {
if (NSPropertyListSerialization.booleanForString(
System.getProperty("ImportFeeds"))) {
Importer.importFeeds();

If the "ImportFeeds" property evaluates to true (or "YES"), then the importer will run.
Enabling logging

WireHose uses the NSLog class to provide logging about its behavior. In this example, we

want to enable logging for the WHImporter class so we can see the feeds being imported.

1. Choose Edit Active Executable 'HelloWorld' from the Project menu.
2. Click the + icon under Launch Arguments to add each of these arguments:

-WODebuggingEnabled NO

—NSDebugGroups "(com.wirehose.base.WHLog.DebugGrouplmporting,
com.wirehose.base.WHLog.DebugGroupWireHose)"

-NSDebugLevel NSLog.DebugLevelCritical

—ImportFeeds YES

3. Check the Use column for each of the arguments.

Developing Applications with WireHose (Mac OS X) 54

8006

Importing feeds

©. Helloworld - Executable: Helloworld (=}

- {’ =
N8 0%
@ Groups & Files
v 54 Helloworld
v (3 Classes
(1) Application java
[3) Session jiva
Li] Directaction java
[3) Importer java
v [entinies
v (9 RSSFeed
[3) RsSFeed java
O RSSFeed.comadi
v (3 RSshtem
[rSSitem_java
Q' RSSItem.eomod
» [web Components
¥ 9 Resources
[%) adaprorDice. plist
[2) layoutDict plist
[5) peopertyBinders. pli
_ Properties
¥ WOAle.icns
_" SampleRSSFeeds.x
_ rss20MappingMod
» [Web Server Resources.
v £ Framewarks
» (3 webobjects
» (3 WireHose
3 Eami

o000
R

o

o

oo

coocooc0n

\Suodyruge , SO0IEL@ , HHCw0os (i

@ (ereiowol >R dd

O © & Executable: Helloworld & 2000
ble "HelloWorld"produced by Target "HelloWorld™ of Project "H
¥ Path to Executable produced by Target "HelloWorld" m

Path: HelloWorld woa Chooses)
¥ Arguments

"Launch Arguments Use |

~WO0OebuggingEnabled NO v

-NSDebugGroups “(com wirehose base. WHLog DebugGrouplmponing, ¢«
~NSDebuglevel NSLog.DebuglevelCritical v
-ImportFeeds YES v

[+ X~

¥ Environment Variables

Name e T T e [T

[¥ Source Directories

NI 4

Running the importer

Now build and launch Hello World, and watch as the feeds are imported. You don't need to
import all the feeds for this example, so you can stop the application once a few dozen have

been imported. The output should look something like this:

Developing Applications with WireHose (Mac OS X)

55

Reading MacOSClassPath.txt ...

Launching HelloWorld.woa ...

java —XX:NewSize=2m -Xmx64m —Xms32m —-DWORootDirectory="/System" ~-DWOLocalRootDirectory=""

—-DWOUserDirectory="/Users/garyt/Library/BuildProducts" -DWOEnvClassPath=""

—DWOApplicationClass=Application —-DWOPIlatform=MacOS —-Dcom.webobjects.pid=2597 —classpath

WOBootstrap.jar com.webobjects. bootstrap.WOBootstrap —-WODebuggingEnabled NO —-NSDebugGroups

"(com.wirehose.base.WHLog.DebugGrouplmporting, com.wirehose.base.WHLog.DebugGroupWireHose)"

—NSDebugLevel NSLog.DebugLevelCritical —ImportFeeds YES

appRoot is /Users/garyt/Library/BuildProducts/HelloWorld.woa/Contents

Loading /Users/garyt/Library/BuildProducts/HelloWorld.woa/Contents/MacOS/MacOSClassPath.txt

Generated classpath:
/Users/garyt/Library/BuildProducts/HelloWorld.woa/Contents/Resources/Java/HelloWorld.jar
/System/Library/Frameworks/JavaFoundation.framework/Resources/Java/javafoundation.jar
/System/Library/Frameworks/JavaEOControl.framework/Resources/Javal/javaeocontrol.jar
/System/Library/Frameworks/JavaEOAccess.framework/Resources/Javal/javaeoaccess.jar
/System/Library/Frameworks/JavaWebObjects.framework/Resources/Java/javawebobjects.jar
/System/Library/Frameworks/JavaJDBCAdaptor.framework/Resources/Javal/javajdbcadaptor.jar
/System/Library/Frameworks/JavaWOExtensions.framework/Resources/Java/JavaWOEXxtensions.jar
/System/Library/Frameworks/JavaXML.framework/Resources/Java/javaxml.jar
I/Library/Frameworks/WireHoseBase.framework/Resources/Java/WireHoseBase.jar
[/Library/Frameworks/WireHoselLayoutSupport.framework/Resources/Java/WireHoselLayoutSupport.jar
/Library/Frameworks/WireHoseWOBUuilderBindings.framework/
/Library/Frameworks/WHOpenBasePrototypes.framework/
/Library/Frameworks/OpenBasePKPIlugin.framework/Resources/Java/OpenBasePKPIluglin.jar
/Users/garyt/Library/Java/

Developing Applications with WireHose (Mac OS X)

Importing feeds

56

[Library/Java/

/System/Library/Java/

/Network/Library/Java
[/Library/WebObjects/Extensions/activation.jar
[Library/WebObjects/Extensions/avalon—framework-4.1.2.jar
/Library/WebObjects/Extensions/axis—ant.jar
/Library/WebObjects/Extensions/axis.jar
/Library/WebObjects/Extensions/commons—discovery.jar
/Library/WebObjects/Extensions/commons-logging.jar
/Library/WebObjects/Extensions/jaxrpc.jar
/Library/WebObjects/Extensions/log4j—-1.2.4.jar
/Library/WebObjects/Extensions/logkit—1.0.1.jar
[/Library/WebObjects/Extensions/mail.jar
/Library/WebObjects/Extensions/saaj.jar
/Library/WebObjects/Extensions/wsdl4j.jar
[/Library/WebObjects/Extensions/xmlrpc—1.1.jar
[Library/WebObjects/Extensions/

[2003-07-10 00:31:45 PDT] <main> WireHose Server 3.0 —— The WireHose frameworks are
copyright 2000-2003 Bulldog Beach Interactive, Inc. All rights reserved. WireHose is a

trademark of Bulldog Beach Interactive, Inc.

[2003-07-10 00:31:46 PDT] <main> Created adaptor of class WODefaultAdaptor on port 2020 and
address icecube.bulldogbeach.com/192.168.0.101 with WOWorkerThread minimum of 16 and maximum

of 256

[2003-07-10 00:31:48 PDT] <main> Application project found: Will locate resources in

‘IUsers/garyt/Desktop/HelloWorld' rather than

Developing Applications with WireHose (Mac OS X)

Importing feeds

57

‘IUsers/garyt/Library/BuildProducts/HelloWorld.woa' .
[2003-07-10 00:31:52 PDT] <main> Creating LifebeatThread now with: HelloWorld 2020
icecube.bulldogbeach.com/192.168.0.101 1085 30000
[2003-07-10 00:31:52 PDT] <main> Welcome to HelloWorld, another top—quality application
using the WireHose frameworks from Bulldog Beach Interactive. The WireHose frameworks are
Copyright 2000-2003 Bulldog Beach Interactive, Inc. All rights reserved. WireHose is a
trademark of Bulldog Beach Interactive, Inc.
[2003-07-10 00:31:52 PDT] <main> The WireHose—-specific defaults are:

WHAdaptorDict = adaptorDict.plist

WHComponentsWithContentAreStateless = YES

WHCookieDomain = default

WHCookiePath =/

WHDefaultAffiliate = default

WHDefaultLayout = Default

WHDefaultTagEntity = WHTag

WHDisableAutoSubEntities = YES

WHDisableGuestPreloading = NO

WHDisableLayoutDictionaryCaching = YES

WHDisableSharedObjectLoading = YES

WHHeaderDebugEnabled = NO

WHIgnoreMissingEntities = YES

WHLayoutDict = layoutDict.plist

WHLookupDictionaryDebugEnabled = NO

WHRewriteSessionCookiePath = YES

WHSQLExceptOperator = EXCEPT

Developing Applications with WireHose (Mac OS X)

Importing feeds

58

Importing feeds

WHSQLIntersectOperator = NO

WHSQLTimestampFormat = default

WHServerName = 127.0.0.1:2020

WHServerNameHeaderKeys = ("x—webobjects—-server—-name", "SERVER_NAME", "WHServerName")

WHStopWordsList = stopwords.txt

WHTagCacheSize = 1024

WHUseEntityHints = YES

WHUserAgentHeaderKeys = ("HTTP_USER_AGENT", "user—-agent")

WHUserEntityName = WHUser
[2003-07-10 00:31:53 PDT] <main> WHDisableSharedObjectLoading=YES, disabled shared object
loading
[2003—-07-10 00:31:53 PDT] <main> EOModel 'RSSFeed' loaded... Connection dictionary replaced.
[2003—-07-10 00:31:54 PDT] <main> EOModel 'RSSltem' loaded... Connection dictionary replaced.
[2003-07-10 00:31:54 PDT] <main> EOModel 'WireHoseBase' loaded... Connection dictionary
replaced, URL was 'jdbc:FrontBase://localhost/wirehose/user=wirehose’, is now:
'idbc:openbase://127.0.0.1/HelloWorld'.
[2003-07-10 00:31:54 PDT] <main> EOModel 'WHOpenBasePrototypes' loaded... Didn't find
WHShouldReplaceAdaptorDictionary=YES in userInfo, will not replace adaptor dictionary.
[2003-07-10 00:32:04 PDT] <main> Importing [RSSFeed 3d7457] 2003-07-10 07:32:04 Etc/GMT
About.com Botany...
[2003-07-10 00:32:05 PDT] <main> WireHose frameworks: Found valid license key. Unlimited
transactions per minute. Non—expiring.
[2003-07-10 00:32:07 PDT] <main> [Adding tags to 1...]
[2003-07-10 00:32:07 PDT] <main> Importing [RSSFeed eef0a8] 2003-07-10 07:32:08 Etc/GMT
About.com Gardening...

Developing Applications with WireHose (Mac OS X) 59

[2003-07-10 00:32:09 PDT] <main> Importing [RSSFeed al16977] 2003-07-10 07:32:09 Etc/GMT
About.com Home Repair...

[2003-07-10 00:32:09 PDT] <main> Importing [RSSFeed b25572] 2003-07-10 07:32:10 Etc/GMT
About.com Interactive Fiction...

[2003-07-10 00:32:11 PDT] <main> Importing [RSSFeed b2311b] 2003-07-10 07:32:11 Etc/GMT
About.com Interior Decorating...

[2003-07-10 00:32:11 PDT] <main> Importing [RSSFeed 7f7fe] 2003-07-10 07:32:12 Etc/GMT
About.com Landscaping...

[2003-07-10 00:32:13 PDT] <main> Importing [RSSFeed 557211] 2003-07-10 07:32:13 Etc/GMT
About.com Publishing...

[2003-07-10 00:32:16 PDT] <main> Importing [RSSFeed 7fa3f6] 2003-07-10 07:32:16 Etc/GMT
About.com Roses...

[2003-07-10 00:32:16 PDT] <main> Importing [RSSFeed 1167f3] 2003—-07-10 07:32:17 Etc/GMT
About.com Woodworking...

[2003-07-10 00:32:18 PDT] <main> Importing [RSSFeed d9edbe] 2003-07-10 07:32:18 Etc/GMT
Absolute Quake Files Archive...

Developing Applications with WireHose (Mac OS X)

Importing feeds

60

Importing feeds

Browsing feeds

Now that you've imported some feeds, it's time to view them in the web browser. The ability

to browse through tags and view available resources is built into WireHose.

1. Choose Edit Active Executable 'HelloWorld' from the Project menu.
2.Uncheck the Use column for the —ImportFeeds YES argument so feeds won't be
imported.

3. Launch the application, and open this URL in your browser:

http://127.0.0.1:2020/cgi-bin/WebObjects/HelloWorld.woa/wa/Drill
4. Browse through the available categories to see the feeds.

The Drill direct action, defined in the WireHoseLayoutSupport framework, acts as a
cover for the WHTagDrillerPage component. A tag driller page renders the current

tag and its child tags, and displays the resources tagged with the current tag. Each tag
is rendered as a hypertext link to the Drill direct action with its path.

—

606 HelloWorld e
“‘_’] @ iy @ @ hu1p://127.0.0.1:2020/ cgi-bin/WebObjects/ = Q- Goagle I
~ [0 Roundup WebObjectsDocs WOS.2 Reference Java 2 AP JavaMall APl D
Browsing resources...

Feeds :

Click on a category below

Consumer Internet

Food, Gardening. Health... Regional
Culture Regional
Dow [gnes 30 Science
Finance Sports

Venture Capital Baseball, Basketball, Football...
General Technolegy
Industry Hardware. Software

Web Log
wirehose €as)

i T g

Developing Applications with WireHose (Mac OS X) 61

http://127.0.0.1:2020/cgi-bin/WebObjects/HelloWorld.woa/wa/Drill

BT Helloworld
thp:l_(l_??.o.o.l:;qlg(:gl-bmlw:bOb}e:ul

i
B

Browsing resources...

Feeds : Culture :
Click on a category below

ndup WebObjectsDocs WOS.2 Reference Java 2 API

2 Q- Goagle

~ JavaMall AP

Resource 12:44 AM -~ Seniors News from moreover.com

Salon
Resource 12:43 AM -~ Salon makes you think

Plastic
Resource 12:43 AM -~ Recycling the web in real time

Developing Applications with WireHose (Mac OS X)

v

Importing feeds

62

Crawling feeds

Importing RSS items into the database is similar to importing feeds, except that as an
aggregator, Hello World will need to crawl the feeds periodically to fetch any updated items.
The crawler will ignore any feeds which had problems the last time they were fetched. It will

also tag each item as it is fetched so users can browse through items by category.

Fetching feeds to crawl

First, a method which fetches the set of feeds to crawl.

1. Add this method to Importer.java:

static NSArray fetchFeedsToCrawl(EOEditingContext ec) {
NSMutableArray qualifiers = new NSMutableArray();

/l fetch all feeds that haven't been fetched in the last hour
qualifiers.addObject(new EOKeyValueQualifier(

"lastFetchDate",

EOQualifier.QualifierOperatorLessThan,

new NSTimestamp().timestampByAddingGregorianUnits(0, 0, 0, -1, 0, 0)));

// and all feeds which weren't invalid last time we fetched
qualifiers.addObject(

WHEnterpriseObject.qualifierForBooleanAttribute(ec,

"RSSFeed", "lastFetchinvalid", EOQualifier.QualifierOperatorEqual, false));

EOQualifier g = new EOAndQualifier(qualifiers);
EOFetchSpecification fs = new EOFetchSpecification("RSSFeed", g, null);
return ec.objectsWithFetchSpecification(fs);

Note: The qualifierForBooleanAttribute method constructs a qualifier to match

boolean values in a database independent fashion. It works by inspecting the current definition of
the boolean attribute to determine whether to use a Boolean, String or Integer to represent true or
false. Note that here we are using "lastFetchinvalid", which is what the attribute is called in the
model. When setting or getting a boolean value on the feed, you'll use the
setLastFetchWaslnvalid and lastFetchWaslnvalid methods defined earlier.

Developing Applications with WireHose (Mac OS X) 63

Crawling feeds

Crawling feeds

The next step is to write the crawler. This method is similar to the importFeeds method,
except that it will call fetchDictionaryFromURL and insertResources repeatedly,

once for each available feed. It will also assign tags to the items in the feed based on the
feed's tags.

1. Add this method to Importer.java:

public static void crawlFeeds() {
EOEditingContext ec = new EOEditingContext();
ec.lock();

NSArray feeds = fetchFeedsToCrawl(ec);
NSLog.debug.appendin("Found "+feeds.count()+" to crawl...");

RSSFeed feed;
NSMutableDictionary rss;
NSMutableArray snapshots;
NSDictionary statusDict;
NSArray inserted;

/I iterate through feeds and fetch items from each one

for (int i=0, count=feeds.count(); i<count; i++) {
feed = (RSSFeed)feeds.objectAtIndex(i);
NSLog.debug.appendin("Crawling "+feed.name()+": "+feed.link());

try {

/I import the dictionary from the feed's URL
rss = WHImporter.fetchDictionaryFromURL(
feed.link(), "Contents/Resources/rss20MappingModel.xml");

/I extract and clean up the dictionaries

snapshots = cleanSnapshots(rss.valueForKeyPath("channel.items"));

/I insert the resources into the database

/I insertResources returns a dictionary of

/l inserted, updated, deleted items

statusDict = WHImporter.insertResources(ec,
snapshots, "RSSltem", "Content/", null,

Developing Applications with WireHose (Mac OS X) 64

Crawling feeds

WHImporter.lgnoreAndTag,
true, true, true, true, false);

/Il get inserted items from the returned dictionary
inserted = (NSArray)statusDict.objectForKey(WHImporter.InsertedKey);

/l add tags to the inserted items based on the feed's tags
tagltemsForFeed(ec, inserted, feed);

/I don't fetch for another hour
feed.setLastFetchDate(new NSTimestamp());

ec.saveChanges();

} catch (Exception e) {
NSLog.debug.appendin("Exception importing "+feed.link()+" - "+e);
feed.setLastFetchWaslinvalid(true);

}
ec.unlock();
ec.dispose();

The insertResources method returns a status dictionary which contains arrays

of updated, inserted, removed and ignored objects. The importFeeds method
ignored this return value, but here the list of inserted items are extracted from the
dictionary so they can be tagged.

Tagging items

In addition to using whatever categories were specified for an item in its RSS feed, the Hello

World crawler will also assign tags based on the feed's categories.

1. Add this method to Importer.java:

static void tagltemsForFeed(EOEditingContext ec, NSArray items, RSSFeed feed) {

/I use this to get a tagpath without "Feeds/" at the beginning

I for example, "Consumer/Gardening" instead of "Feeds/Consumer/Gardening"
WHTag feedAncestor = WHTag.tagForPath(ec, "Feeds", false);
NSMutableArray tags = new NSMutableArray();

Developing Applications with WireHose (Mac OS X) 65

Crawling feeds

String path;
WHTag tag;

/I iterate through the feed's tags

/l and build an array of tags to assign to items

for (int i=0, count=feed.tags().count(); i<count; i++) {
tag = (WHTag)feed.tags().objectAtindex(i);

/I get a tagpath that starts with "Content/" instead of "Feeds/"
/I e.g., "Content/Consumer/Gardening"
path = "Content/"+tag.tagPath(feedAncestor, "/");

/l add a tag for that path
tags.addObject(WHTag.tagForPath(ec, path, true));

/l 'and add a tag for that path, plus the feed's name
/l e.g., "Consumer/Gardening/About.com Botany"
tags.addObject(WHTag.tagForPath(ec, path+"/"+feed.name(), true));
RSSltem item;
/I iterate through items
for (int i=0, count=items.count(); i<count; i++) {

item = (RSSltem)items.objectAtindex(i);

I/l associate the item with the feed
item.addObjectToBothSidesOfRelationshipWithKey(feed, "feed");

// 'and add tags to the item
WHTag.addTags(item, tags);

Developing Applications with WireHose (Mac OS X) 66

Crawling feeds

Running the import

Next, you'll add another system property to control whether or not feeds get crawled at

runtime. Then it's time to test the crawler.

1. Add these lines to thaitialize method in Application.java:

if (NSPropertyListSerialization.booleanForString(
System.getProperty("CrawlFeeds"))) {
Importer.crawlFeeds();

Add these lines to the Properties file:

controls whether feeds are crawled at runtime
CrawlFeeds = NO

2.Choose Edit Active Executable 'HelloWorld' from the Project menu.
3. Click the + icon under Launch Arguments to add this argument, and check the Use

column:
—CrawlFeeds YES

Now build and launch Hello World, and watch as the feeds are crawled. You don't need to
crawl all the feeds for this example, so you can stop the application once a few have been

imported. The output should look something like this:

Developing Applications with WireHose (Mac OS X) 67

Reading MacOSClassPath.txt ...

Launching HelloWorld.woa ...

java —XX:NewSize=2m -Xmx64m —Xms32m —-DWORootDirectory="/System" ~-DWOLocalRootDirectory=""

—-DWOUserDirectory="/Users/garyt/Library/BuildProducts" -DWOEnvClassPath=""

—DWOApplicationClass=Application —-DWOPIlatform=MacOS -Dcom.webobjects.pid=6807 —classpath

WOBootstrap.jar com.webobjects. bootstrap.WOBootstrap —-WODebuggingEnabled NO —-NSDebugGroups

"(com.wirehose.base.WHLog.DebugGrouplmporting, com.wirehose.base.WHLog.DebugGroupWireHose)"

—NSDebugLevel NSLog.DebugLevelCritical —CrawlFeeds YES

appRoot is /Users/garyt/Library/BuildProducts/HelloWorld.woa/Contents

Loading /Users/garyt/Library/BuildProducts/HelloWorld.woa/Contents/MacOS/MacOSClassPath.txt

Generated classpath:
/Users/garyt/Library/BuildProducts/HelloWorld.woa/Contents/Resources/Java/HelloWorld.jar
/System/Library/Frameworks/JavaFoundation.framework/Resources/Java/javafoundation.jar
/System/Library/Frameworks/JavaEOControl.framework/Resources/Javal/javaeocontrol.jar
/System/Library/Frameworks/JavaEOAccess.framework/Resources/Javal/javaeoaccess.jar
/System/Library/Frameworks/JavaWebObjects.framework/Resources/Java/javawebobjects.jar
/System/Library/Frameworks/JavaJDBCAdaptor.framework/Resources/Javal/javajdbcadaptor.jar
/System/Library/Frameworks/JavaWOExtensions.framework/Resources/Java/JavaWOEXxtensions.jar
/System/Library/Frameworks/JavaXML.framework/Resources/Java/javaxml.jar
I/Library/Frameworks/WireHoseBase.framework/Resources/Java/WireHoseBase.jar
[/Library/Frameworks/WireHoselLayoutSupport.framework/Resources/Java/WireHoselLayoutSupport.jar
/Library/Frameworks/WireHoseWOBUuilderBindings.framework/
/Library/Frameworks/WHOpenBasePrototypes.framework/
/Library/Frameworks/OpenBasePKPIlugin.framework/Resources/Java/OpenBasePKPIluglin.jar
/Users/garyt/Library/Java/

Developing Applications with WireHose (Mac OS X)

Crawling feeds

68

[Library/Java/

/System/Library/Java/

/Network/Library/Java
[/Library/WebObjects/Extensions/activation.jar
[Library/WebObjects/Extensions/avalon—framework-4.1.2.jar
/Library/WebObjects/Extensions/axis—ant.jar
/Library/WebObjects/Extensions/axis.jar
/Library/WebObjects/Extensions/commons—discovery.jar
/Library/WebObjects/Extensions/commons-logging.jar
/Library/WebObjects/Extensions/jaxrpc.jar
/Library/WebObjects/Extensions/log4j—-1.2.4.jar
/Library/WebObjects/Extensions/logkit—1.0.1.jar
[/Library/WebObjects/Extensions/mail.jar
/Library/WebObjects/Extensions/saaj.jar
/Library/WebObjects/Extensions/wsdl4j.jar
[/Library/WebObjects/Extensions/xmlrpc—1.1.jar
[Library/WebObjects/Extensions/

[2003-07-10 02:50:46 PDT] <main> WireHose Server 3.0 —— The WireHose frameworks are
copyright 2000-2003 Bulldog Beach Interactive, Inc. All rights reserved. WireHose is a

trademark of Bulldog Beach Interactive, Inc.

[2003-07-10 02:50:48 PDT] <main> Created adaptor of class WODefaultAdaptor on port 2020 and
address icecube.bulldogbeach.com/192.168.0.101 with WOWorkerThread minimum of 16 and maximum

of 256

[2003-07-10 02:50:49 PDT] <main> Application project found: Will locate resources in

‘IUsers/garyt/Desktop/HelloWorld' rather than

Developing Applications with WireHose (Mac OS X)

Crawling feeds

69

‘IUsers/garyt/Library/BuildProducts/HelloWorld.woa' .
[2003-07-10 02:50:55 PDT] <main> Creating LifebeatThread now with: HelloWorld 2020
icecube.bulldogbeach.com/192.168.0.101 1085 30000
[2003-07-10 02:50:55 PDT] <main> Welcome to HelloWorld, another top—quality application
using the WireHose frameworks from Bulldog Beach Interactive. The WireHose frameworks are
Copyright 2000-2003 Bulldog Beach Interactive, Inc. All rights reserved. WireHose is a
trademark of Bulldog Beach Interactive, Inc.
[2003-07-10 02:50:55 PDT] <main> The WireHose—-specific defaults are:

WHAdaptorDict = adaptorDict.plist

WHComponentsWithContentAreStateless = YES

WHCookieDomain = default

WHCookiePath =/

WHDefaultAffiliate = default

WHDefaultLayout = Default

WHDefaultTagEntity = WHTag

WHDisableAutoSubEntities = YES

WHDisableGuestPreloading = NO

WHDisableLayoutDictionaryCaching = YES

WHDisableSharedObjectLoading = YES

WHHeaderDebugEnabled = NO

WHIgnoreMissingEntities = YES

WHLayoutDict = layoutDict.plist

WHLookupDictionaryDebugEnabled = NO

WHRewriteSessionCookiePath = YES

WHSQLExceptOperator = EXCEPT

Developing Applications with WireHose (Mac OS X)

Crawling feeds

70

Crawling feeds

WHSQLIntersectOperator = NO

WHSQLTimestampFormat = default

WHServerName = 127.0.0.1:2020

WHServerNameHeaderKeys = ("x—webobjects—-server—-name", "SERVER_NAME", "WHServerName")

WHStopWordsList = stopwords.txt

WHTagCacheSize = 1024

WHUseEntityHints = YES

WHUserAgentHeaderKeys = ("HTTP_USER_AGENT", "user—-agent")

WHUserEntityName = WHUser
[2003-07-10 02:50:56 PDT] <main> WHDisableSharedObjectLoading=YES, disabled shared object
loading
[2003-07-10 02:50:58 PDT] <main> EOModel 'RSSFeed' loaded... Connection dictionary replaced.
[2003-07-10 02:50:58 PDT] <main> EOModel 'RSSltem' loaded... Connection dictionary replaced.
[2003-07-10 02:50:58 PDT] <main> EOModel 'WireHoseBase' loaded... Connection dictionary
replaced, URL was 'jdbc:FrontBase://localhost/wirehose/user=wirehose’, is now:
'idbc:openbase://127.0.0.1/HelloWorld'.
[2003-07-10 02:50:58 PDT] <main> EOModel 'WHOpenBasePrototypes' loaded... Didn't find
WHShouldReplaceAdaptorDictionary=YES in userInfo, will not replace adaptor dictionary.
[2003-07-10 02:51:09 PDT] <main> Found 713 to crawl...
[2003-07-10 02:51:09 PDT] <main> Crawling About.com Botany:
http://lwww.growinglifestyle.com/h117/index.rss
[2003-07-10 02:51:57 PDT] <main> Importing [RSSItem 48854d] 2003-07-10 09:51:57 Etc/GMT
Concrete Countertops: Design, Form, and Finishes for the
[2003-07-10 02:52:00 PDT] <main> WireHose frameworks: Found valid license key. Unlimited

transactions per minute. Non—expiring.

Developing Applications with WireHose (Mac OS X) 71

Crawling feeds

[2003-07-10 02:52:02 PDT] <main> Crawling About.com Home Repair:
http://www.growinglifestyle.com/h108/index.rss

[2003-07-10 02:52:04 PDT] <main> Importing [RSSItem ab5e0b] 2003-07-10 09:52:04 Etc/GMT
Mosquito Trap, 3/4 Acre Mosquito Catcher...

[2003-07-10 02:52:07 PDT] <main> Crawling About.com Interactive Fiction:
http://interactfiction.about.com/library/news/ifnews.rss

[Fatal Error] :34:12: Open quote is expected for attribute "NAME".

[2003-07-10 02:52:09 PDT] <main> WHImporter.fetchSnapshotsFromURL() — Error decoding root
dictionary: Open quote is expected for attribute "NAME".

[2003-07-10 02:52:09 PDT] <main> Exception importing
http://interactfiction.about.com/library/news/ifnews.rss — :
com.webobjects.appserver.xml.WOXMLException [org.xml.sax.SAXParseException] Open quote is
expected for attribute "NAME".

[2003-07-10 02:52:09 PDT] <main> Crawling About.com Interior Decorating:
http://www.growinglifestyle.com/h113/index.rss

[2003-07-10 02:52:11 PDT] <main> Importing [RSSltem 24b943] 2003-07-10 09:52:11 Etc/GMT
Brill Luxus 38 Reel Push Manual Mower...

[2003-07-10 02:52:13 PDT] <main> Crawling About.com Landscaping:
http://lwww.growinglifestyle.com/h110/index.rss

[2003-07-10 02:52:15 PDT] <main> Importing [RSSltem daal56] 2003-07-10 09:52:15 Etc/GMT
Concrete Countertops: Design, Form, and Finishes for the

[2003-07-10 02:52:15 PDT] <main> [Adding tags to 1...]

[2003-07-10 02:52:15 PDT] <main> Crawling About.com Roses:
http://www.growinglifestyle.com/h101/index.rss

[2003-07-10 02:52:16 PDT] <main> Importing [RSSItem 82fd0f] 2003—07-10 09:52:16 Etc/GMT

Developing Applications with WireHose (Mac OS X) 72

Crawling feeds

Plants of the Metroplex...

[2003-07-10 02:52:19 PDT] <main> Crawling Advogato: http://www.advogato.org/rss/articles.xml
[2003-07-10 02:52:20 PDT] <main> Importing [RSSItem 8dea20] 2003-07-10 09:52:20 Etc/GMT
White Box Vs Black Box Voting Systems...

[2003-07-10 02:52:20 PDT] <main> Importing [RSSItem 30b6a4] 2003-07-10 09:52:21 Etc/GMT Open
Advogato?...

[2003-07-10 02:52:22 PDT] <main> Importing [RSSltem d6ea02] 2003-07-10 09:52:22 Etc/GMT
Which License for Free Documentation?...

[2003-07-10 02:52:22 PDT] <main> Importing [RSSItem ¢1902d] 2003-07-10 09:52:23 Etc/GMT
Forking the good fork...

[2003-07-10 02:52:24 PDT] <main> Importing [RSSltem 7fa3f6] 2003—-07-10 09:52:24 Etc/GMT Open
Investment...

[2003-07-10 02:52:24 PDT] <main> Importing [RSSItem ¢8092a] 2003-07-10 09:52:25 Etc/GMT
CounterfeitProof...

[2003-07-10 02:52:26 PDT] <main> Importing [RSSltem 4d75ae] 2003-07-10 09:52:26 Etc/GMT Open
source software and ethics...

[2003-07-10 02:52:26 PDT] <main> Importing [RSSltem 76358a] 2003-07-10 09:52:27 Etc/GMT
UKUUG Linux 2003 conference: Early Bird registration until end June...

[2003-07-10 02:52:28 PDT] <main> Importing [RSSItem c¢126b3] 2003-07-10 09:52:28 Etc/GMT Nine
days before Software Patent in Europe....

[2003-07-10 02:52:30 PDT] <main> Importing [RSSItem a04cf8] 2003-07-10 09:52:30 Etc/GMT How
should we encourage donations for software?...

[2003-07-10 02:52:31 PDT] <main> Crawling Aerospace and Defense Industry News:
http://www.moreover.com/cgi—local/page?o=rss&c=Aerospace%20and%20defense%20industry%20news
[2003-07-10 02:52:34 PDT] <main> Importing [RSSItem 4651f2] 2003-07-10 09:52:34 Etc/GMT Farm

Developing Applications with WireHose (Mac OS X) 73

Crawling feeds

machine helps Boeing production...

Developing Applications with WireHose (Mac OS X) 74

Crawling feeds

Importing in a separate thread

Since crawling the feeds should happen repeatedly while the application is running —— and we
don't want to delay application startup while the feeds are crawled —— the feed crawler should

run in its own thread.
1. Add this method to Importer.java:

public static void crawlFeedsInThread() {
Thread crawler = new Thread() {

public void run() {

try {
sleep(1000 * 15); // wait 15 secs before first crawl

while (true) {
crawlFeeds();
sleep(1000 * 60 * 5); // crawl every 5 minutes

}

} catch (InterruptedException e) {
System.out.printin("crawler: "+e);

b
crawler.start();

}
2. And change this line in Application.java:

Importer.crawlFeeds();
to this:
Importer.crawlFeedsInThread();

Now, when you launch Hello World, application startup isn't delayed, and the application will

check every five minutes for feeds which haven't been crawled in the last hour to fetch.

Note: Since EOF is not by default multithreaded, this technique will still lock the EOF stack for each fetch

Developing Applications with WireHose (Mac OS X) 75

Crawling feeds

or commit by the importer to the database. For maximum multithreadedness, you can create a new EOF
stack for the importer. To do this, you create a new object store coordinator for the importer, and use it as
the root object store for the importer's editing contexts.

1. Add this line to Importer.java:

static EOObjectStoreCoordinator objStoreCoord = new
EOObjectStoreCoordinator();
2. And change all EOEditingContext constructors in Importer.java from this:

new EOEditingContext()
to this:
new EOEditingContext(objStoreCoord)

WireHose posts a ShouldinvalidateCache notification when new items are tagged, so objects in

other EOF stacks can keep their caches up to date. See the reference documentation for WHFetcher,
WHCachingDataSource, WHTagFetcher and WHTagDataSource for details. If you are deploying multiple
instances of your application, you can listen for this notification and propagate it to the other instances to
ensure that all the instances stay up to date.

Browsing items

If you open this URL in your browser,
http://127.0.0.1:2020/cgi-bin/WebObjects/HelloWorld.woa/wa/Drill

you can browse the items which have been imported.

Developing Applications with WireHose (Mac OS X) 76

http://127.0.0.1:2020/cgi-bin/WebObjects/HelloWorld.woa/wa/Drill

Crawling feeds

HelloWorld B |6 HelloWorld
]"' 4 » I@ A A @ A http://127.0.0.1:2020/cgi-bin/WebObjects/ = Q' H 4. » ‘@ A A ‘ @ GhllplllZ?Oo 1:2020/cgi-bin/WebObjects/ ' «
,mv WOos.2 Java 2 API JavaMall API = -ﬁmﬂ u WebOb) WO0s.2 Java 2 API JavaMall AP
Browsing resources... Browsing resources...
Click on a category below Content : Technology : Hardware :
Click on a category below
Content
Consumer, Culture, Dow lones 30...
¥ Ars Technica
Consumer, Culture, Dow Jones 30... australia.internet.com
wirehose)

Interoperability An ndar
Resource 03:04 AM -~ The basis of any network is interoperability, Only if systems
can share information and work together do they form a network.,

peakeasy Lets Consumers Become WISPs

Resource 03:04 AM -~ ISP Speakeasy has started a program that will let its
consumer customers become the administrators of their own little wireless ISP
service for neighbors.

Wi-Fi at Wimbledon L
Resource 03:04 AM -~ 802.11, Anyone? This week's Wimbledon tennis tournament &
at the All England Lawn Tennis and Croquet Club in London is the first major v
~ Disply a menu e

Each resource is rendered using the default WHShowResource component. In the next section
you'll learn how to build a custom renderer component for RSSItem objects, and enable your
component in the layout dictionary.

Customizing how items are shown

Since WireHose is an object-oriented system, with a strong emphasis on code reuse, there is
a clean separation between business logic and presentation components. For maximum
flexibility, WireHose allows you to use any component to render or edit an object on a page.

Special components called "switchers" keep WireHose updated as to which object is currently
being rendered or edited.

1. Select the Web Components group in the Files pane.

2.Choose New File... from the File menu. Scroll down to the WireHose Resource
Renderer template and click Next.

3. Name it ShowRSSltem, add it to the Application Server target in the Hello World
project, and click Finish.

4. Add this method to ShowRSSltem.java:

public RSSltem item() {
return (RSSltem)object();

Developing Applications with WireHose (Mac OS X) 77

Crawling feeds

Note: This method isn't strictly required,; it's a convenience so that WebObjects Builder will
display the bindings available for RSSItem objects. You can bind values such as the item's name

to either object.name or item.name.

5. Open ShowRSSItem.wo in WebObjects Builder.

0080 & ShowRSSitem.wo

([0](@][B] 7]u[][3][K&] (Nore B[[=[EE[-[B|g e
)| [@] o]] 2|2 @ |6 =] 2] 502 8| R |6« 3@
(B> [RlEeaictescription] (8] B [WEtowresourcevata] B - finished parsing project

=

EHM

m‘:hod!e.ource!

point

ShowRSSItem
application >
session > m
@string
PuserCanCreate
@userCanDelete
@userCanEdit
BuserCanView

“Edit Source v

6. Delete the paragraph and insert a new one. Inside it, insert a WOHyperlink, and bind

«»(

its href to item.link

660 ———0 < ShowRsSitem.wo]
[®[0][@][B1 0TI 3|[E (o B[a[ZI= E- (B2

AR EEEERFE G B EEEEEEGEE
®’M ~ action

- = — actionClass
%?%ﬁim — directActionName
B Eroetoas] disabled
fragmentldentifier
otherTagString
- pageName
- queryDictionary
+-[= secure

ShowRSSItem string tem

hasObject target fillate

hasTex1Descrip wteAdded >

helper Connect to new binding... oy

isRenderingOne} JMGEKM

Item isindexed

mediaDescriptign ~ keywords »i

object e :

nhisete »Y nama
Edit Source Vi

7. Inside the link, insert a WOString. Bind its value to item.name
8. Insert a couple dashes, and another WOString. Bind its value to

item.textDescription

Note: Since "title" is an optional attribute in an RSS item, you may want to use WOConditional

components to render the link differently depending on whether or not the item has a name.

Since it's traditional in an aggregator to indicate where an item originated, you can add a link

Developing Applications with WireHose (Mac OS X) 78

Crawling feeds

to the item's feed. This link will use the WireHose "Display” direct action, which acts as a
cover for the WHShowODbjectPage component. The Display direct action takes one
parameter, "resource”, set to the global ID of the object to be displayed. WHEnNterpriseObject
provides utility methods to encode and decode globallDs as compact strings suitable for this

purpose.

1. Add this method to RSSltem.java:

public String feedGloballD() {
return WHEnterpriseObject.encodedGloballDForObject(feed());

}
2.In WebObijects Builder, after the description, insert a pair of parentheses, and

between them, insert a WOHyperlink. Bind its actionClass to "Display"”, and add a
binding called ?resource set to item.feedGloballD.

(6] (&) WOHyperkink Ending Inspector
—— -, | Anribute Binding 183
¥ | action
actionClass “Display”
e — directActionName
Hyperlink2 u disabled
fragmentidentifier
le] href
| otherTagString
pageName
queryDictionary
secure
sting
target
Tresource item.feedGloballo
{ Make Static)

3. Inside the WOHyperlink, add a WOString with its value set to item.feed.name

8006 & ShowRsSitem.wo
(5|[0][@![B[7]U[T][3][E](Nore EUEEEECEHNEE
][] (]| G| 2| 2| v @] ¢ 8= @])0)= R o]« 3|
B Rilitesnane] [R10] - (RI[Tten-textbescristion] (@] (ol [Ri[Tten.Teea.cone] RID), (77)
A8 (EhouTogz)
[shouTags]

(Ehoutogs)
[[WstowrezourceToy:] 3
[shouTon:]

w3

polnt

ShowRSSItem
application >
session > m
@string
@userCanCreate
@userCanDelete
@userCanEdit
BuserCanView
GviswahlaDhisrte

Edit Source vi

«

The final step is to modify the layout dictionary to tell the WHSwitchRenderer components to
use ShowRSSItem instead of WHShowResource.

Developing Applications with WireHose (Mac OS X) 79

Crawling feeds

1. Select layoutDict.plist in the Resources group in Project Builder.
2. Find this section:

renderers = {
WHChannel = WHShowChannel;
WHComponentChannel = WHShowComponentChannel;
WHFetcher = WHShowFetcher;
WHResource = WHShowResource;

3.Change it so it reads:

renderers = {
WHChannel = WHShowChannel;
WHComponentChannel = WHShowComponentChannel;
WHFetcher = WHShowFetcher;
WHResource = WHShowResource;
RSSItem = ShowRSSltem;

4. Build and launch the application, and open this URL in your browser:

http://127.0.0.1:2020/cgi-bin/WebObjects/HelloWorld.woa/wa/Drill

You'll see your new component is being used to display items.

enon HelloWorld i
@ A A l @ http://127.0.0.1:2020/cgi-bin/WebObjects/ '@"

ﬁ—--np‘P wos.2 Java 2 API JavaMall API m
Browsing resources...
Top : Content : Technology : Hardware

Click on a category below

Ars Technica
australia.internet.com

Interoperability An ndar: r -~ The basis of any network is
interoperability. Only if systems can share information and work together do they
form a network, (ralia,i

\ -~ ISP Speakeasy has started a program
that will let its consumer customers become the administrators of their own little
wireless ISP service for neighbors, (australia.internet.com)

Wi-Fi at Wimbledon -~ 802.11, Anyone? This week's bledon tennis tour

at the All England Lawn Tennis and Croquet Club in London is the first major

sporting event in Europe to feature wireless access -- and one of the first ever with 'a
free public access, (australiainternet.com) R v

Developing Applications with WireHose (Mac OS X) 80

http://127.0.0.1:2020/cgi-bin/WebObjects/HelloWorld.woa/wa/Drill

Crawling feeds

Note: Since there is a to—many relationship between RSSFeed and RSSltem, you could build a
ShowRSSFeed component, and include an option to show the individual items for a feed.

To do this, you would embed a WHSwitchRenderer component inside a WORepetition which iterates over
the feed's items, and set the switcher's object binding to the item. WireHose will automatically include

the proper renderer component to show an item.

At this point the business logic for Hello World is complete. RSS feeds and items are

modeled and being imported into the database. The next step will be to customize Hello
World's user interface so users can search items, login and create personalized topics for their
page.

Developing Applications with WireHose (Mac OS X) 81

WireHose layout concepts

All WireHose web components, pages and direct actions are defined in the
WireHoselLayoutSupport framework, which also contains application and session-level logic.
This framework is only required for WireHose web applications; you can build

command-line tools which manipulate resources and tags using just the WireHoseBase

framework.

All WireHose application—level logic is accessed via static methods on the
WHApplicationHelper class, and all session-level logic is contained in instances of
WHSessionHelper.

Note: WireHose is designed so that you can add its frameworks to an existing WebObjects project without
having to subclass its application or session classes. WireHose—specific WOApplication and WOSession
subclasses are provided, but their use is optional. See the reference documentation for information about
adding WireHose support to existing WebObjects classes.

The application helper

WHApplicationHelper is a class that handles application—level WireHose functionality. All

its methods are static, so you never instantiate or subclass it. Its primary responsibilities are
providing access to system properties, initializing WireHose data structures, providing access
to the application's layout dictionary, and handling access control. During startup, the
application helper also controls whether and how WireHose will modify EOModels by
automatically creating subentities for particular entities.See "Multiple affiliates and auto

subentities" for more information about this feature.

Developing Applications with WireHose (Mac OS X) 82

WireHose layout concepts

Application startup

In response to WOApplication's ApplicationWillFinishLaunching naotification, the
application helper performs a number of initialization tasks. These include getting system

properties, setting default values, and logging the values of WireHose-specific properties.

Once it has completed initialization, WHApplicationHelper posts an
ApplicationHelperDidFinishlinitializing notification to declare that it's now
safe to access WireHose objects. This is the notification Hello World's Application.java

listens for before importing and crawling feeds.

Customizing WHApplicationHelper

WHApplicationHelper provides a delegate interface so you can customize its behavior. It
defines several methods which you can use to customize how users are logged in, how guest

users get created, and whether or not a user can view, edit or delete objects.

Typically you'll set your application class as WHApplicationHelper's delegate, but any object
can be a delegate. You don't need to implement all the methods in the interface or declare that
your object implements the interface; WHApplicationHelper will only call the delegate

methods you implement.

Customizing authentication
You can override how WireHose associates a user with a session by implementing a delegate
method called userFromRequest. You can inspect whatever formvalues, cookies or

headers you find in the request to determine the user to return. You can also control how

guest users are created or fetched through the guestUserForAffiliate method.

Developing Applications with WireHose (Mac OS X) 83

WireHose layout concepts

Customizing access control

The various WireHose layout components, pages and direct actions will query
WHApplicationHelper to determine if a user is allowed to view, edit or delete objects. You
can implement the userCanViewObiject, userCanEditObject and

userCanDeleteObject delegate methods to override the default behavior. The
filteredUserViewableObjects is also available so you can quickly filter entire

arrays rather than single objects. Note that these methods will be called often, so they should

have as little overhead as possible.

The session helper

Each session in a WireHose application has an associated WHSessionHelper instance, which
handles session-specific WireHose properties. It is a "helper" class so you don't have to

subclass WHSession to access WireHose features.

The session helper maintains knowledge of the current user and the object currently being
edited. It also holds the current WireHose page rendering context, including the current layout
and how to render particular items in various areas of assorted pages within the available
layouts. WHSessionHelper also handles localization, browser sniffing, login cookie

generation and the user's current search string.
Accessing the session helper

The session helper is stored in the session's dictionary. WHComponent, WHSession and
WHDirectAction provide access to the session helper via the helper() method. You

can access the session helper in your own classes by implementing the following method:

public WHSessionHelper helper() {

WHSessionHelper helper = (WHSessionHelper)session().objectForKey(
WHApplicationHelper.SessionHelperKey);

if (helper == null) {
helper = new WHSessionHelper(session());
session().setObjectForKey(helper,

WHApplicationHelper.SessionHelperKey);
}

return helper;

Developing Applications with WireHose (Mac OS X) 84

WireHose layout concepts

WireHose user interface concepts

Like all WebObjects web applications, a WireHose application consists of pages and
components. The WireHoseLayoutSupport framework provides a very dynamic, flexible
system for controlling your application's appearance and behavior.

To achieve this flexibility, WireHose introduces the concepts of layouts, pages, wrappers and

areas. These are defined in a configuration file known as the application's layout dictionary.
Layouts

WireHose provides the ability for your application to have multiple user interface
appearances (also known as being "skinnable"). Each separate look in a WireHose application
is called a layout.

A WireHose application can support multiple branded affiliates from a single codebase, as in
an application service provider environment. Or it can allow the user to personalize the look
of their page in addition to personalizing its content. You can also use this ability to support
multiple output formats, such as XML, HDML, SMIL, RSS, RDF, etc.

You can substitute pages and components for a given layout; the session helper uses the

layout dictionary to determine which components to use for each layout.
Pages

Each page is identified by its canonical name, which is typically the name of a page's
superclass. For example, the canonical name for a search results page is
"WHSearchResultsPage". You can provide a subclass of WHSearchResultsPage, such as
"MySearchResultsPage”, and with an appropriate entry in the layout dictionary, have it be

used only when a particular layout is active.

Developing Applications with WireHose (Mac OS X) 85

WireHose layout concepts

Wrappers

Each layout has an associated wrapper, which defines the look for that layout. A wrapper
component will include the enclosing <HTML><BODY>...</BODY></HTML> tags, and
provides a WOComponentContent in which pages are rendered. WireHose page components
therefore do not usually contain these tags; rather, they use a WOSwitchComponent to switch
in the appropriate wrapper for the current layout via a helper.currentWrapper

binding. This allows a page component to be used in multiple layouts.
Areas

Wrappers and pages also may define multiple areas. For example, a three—column layout
may define three areas, "left", "middle" and "right", while another layout may include only a
"main" area. Each of a user's channels are mapped to a particular area through its areaName

property.
The layout dictionary

WHApplicationHelper provides access to the current layout dictionary in its
layoutDictionary method. The location of the layout dictionary can be specified via the
WHLayoutDict property, or you can call setLayoutDictionary to provide one
programmatically in response to the

ApplicationHelperWillFinishlinitializing notification.

Usually you won't access the layout dictionary directly. Rather, the session helper looks up

values in the layout dictionary for you to resolve component bindings and values.

Developing Applications with WireHose (Mac OS X) 86

WireHose layout concepts

What's specified by the layout dictionary

The layout dictionary is used to control which components are switched in for each area, page
and layout. It has a very flexible structure: you can define entries which apply to all areas in a
layout, all pages in a layout, an area in all layouts, a page in all layouts, an area in a page in a

layout, etc.

Components that inherit from WHComponent often resolve their bindings through the layout
dictionary rather than being set directly by a parent component. A component's color
binding can resolve to "blue" in one area, and "green" in another, depending on the current

area, page and layout.

The current layout

By default, WireHose will use the value of the user's currentLayout property to

determine which layout to use. You can override this by calling setCurrentLayout.
WHSessionHelper can also automatically determine which layout to use by sniffing HTTP
request headers during its constructor. This is useful for temporarily overriding the user's

layout preference depending on the device they are currently using to access the application.

Rapid turnaround

During development, you can disable caching the layout dictionary through the
WHDisableLayoutDictionaryCaching property. If this property is true,

WHApplication will force the layout dictionary to be reloaded before each incoming request
is handled. This allows you to make changes in the layout dictionary and see them
immediately without re—launching your application.

Developing Applications with WireHose (Mac OS X) 87

WireHose layout concepts

Using the layout dictionary

WHSessionHelper provides your primary access to the layout dictionary. To resolve bindings
such as helper.@itemInArea.someKey, the session helper will look in the dictionary

at the most specific place possible to resolve the value for someKey in the current
component. For itemInArea, that is the current area, in the current page, in the current
layout. If a value isn't found at that location in the dictionary, WHSessionHelper will look at
the next most specific place, and so on, until it finds a value. It then caches the value at the
original place it looked so the value is immediately available the next time it is needed.

How WireHose resolves layout dictionary values

Here's the order in which WHSessionHelper attempts to resolve values in the layout

dictionary for area—level bindings:

1. Area in current page

2. Area in current wrapper
3. Current page

4. Current wrapper

5. Area in default page

6. Area in default wrapper
7. Default page

8. Default wrapper

To resolve page-level bindings, the session helper starts at the current page, and skips the

area—level bindings:

1. Current page
2. Current wrapper
3. Default page
4. Default wrapper

Developing Applications with WireHose (Mac OS X) 88

WireHose layout concepts

Layout dictionary structure

The layout dictionary consists of a nested hierarchy of dictionaries, arrays and constant

values:
{
defaults = {
wrapper = {
areas = {
areaName = {
componentName = {
pages ={
pageName = {
areaName ={
componentName = {
J%
layouts = {
layoutName = {
wrapper = {
areas ={
areaName = {
componentName = {
pages ={
pageName = {
areaName = {
componentName = {
}

See the WHSessionHelper documentation for methods such as itemlnArea(String)

and itemInPage(String) for the specific keypaths checked while resolving items.

Developing Applications with WireHose (Mac OS X) 89

WireHose layout concepts

Editors and renderers

Earlier in this tutorial, you built custom renderers for RSS items and feeds. You added a
couple lines to the layout dictionary so WireHose would know to use your renderer instead of
the default WHShowResource component. This section describes a few more details about

that mechanism.

A common action when rendering a WireHose page is to iterate over a list of objects, and
select the appropriate renderer for that object. for example, WHTagDrillerPage iterates over a
list of resources which have been tagged with the current tag. For each resource, it uses a

WHSwitchRenderer to determine which component to use to render it.

Switchers keep the session helper updated as to which object is currently being rendered or
edited. The currentRenderer() and currentEditor() methods look up an
area—level dictionary called "renderers" or "editors" to determine which component to use.

Here's a sample:

pages = {
MyPage = {
someArea = {
renderers = {
MyPicture = ShowMyPicture;
Customer = ShowCustomer;
3
editors = {
MyPicture = EditMyPicture;
Customer = WHBIank; // don't allow editing

k

If it doesn't find an entry for a particular entity, the session helper will look for an entry for
each of the current entity's parent entities until it finds a match, so you can have

entity—specific renderers as shown in the example.

Note: You can provide your own custom WHSwitchRenderer subclass to enable special behavior or

appearance. See the reference documentation for details.

Developing Applications with WireHose (Mac OS X) 90

Customizing the user interface

WireHose features a very flexible approach to customizing your application's user interface.
The "layout dictionary" defines one or more layouts for an application, and includes entries
which determine how component bindings should be resolved for the various areas of each

page within a particular layout.

You've already created components to display feeds and items properly, and modified the
layout dictionary so your components are used instead of the defaults. In this section, you'll

add a search box, and customize how resources can be browsed and searched.
Making the main page

The first customization you'll make to the Hello World user interface will be to allow users to
browse available content from the main page. To do this, you'll embed a WHTagDriller
component, similar to how a WHTagDrillerPage does. This tagdriller will be limited to

showing only items under the "Content" tag.

1. Open MainPage.wo in WebObjects Builder.

‘006 < MainPage.wo
(S[e]@|[s[rTu[TI[3]|[E (e B[M[Z[EEI-[B[S[F[
][] 7] 21| i 2] [Y] |) 0] O 2 B R 5o 5 G

E

polnt

MainPage
application >
session >
@string
@userCanCreate
@userCanDelete
DuserCanEdit
@userCanView
@viewableObjects
helper >
nanaNsma
Edit Source vi

2. Delete the innermost WOSwitchComponent.
3. Choose Custom WebObject from the WebObjects menu.
4. For "WebObijects class to use:" type WHTagDriller, and click OK.

Developing Applications with WireHose (Mac OS X) 91

Customizing the user interface

06 Custom WebObject
@ Configure the new web object:
WebObject class to use: [WHTagDriller H
Name (optional):
——
(Cancel) 5
A

5. Set its tagPath to "Content" and showTagPath to false.

006 &) MainPage.wo
[F[0][@][B]1u[T][3][&] (e BILBEERENES
= EEE I QR SR EE R EE EICEE

Save completed
—
%) (Toglr i T Ter] k)

aocuments [Eext)polnt

MainPage
application
session
@string
PuserCanCreate
@userCanDelete
BuserCanEdit
BuserCanView
@viewableObjects
helper >

Edit Source A
6. Launch the Hello World application if necessary. As long as rapid turnaround is

R ———]

enabled, you won't need to rebuild it to see your changes.
7.0pen this URL in your browser:

http://127.0.0.1:2020/

R HelloWorld R
@ A http://127.0.0.1:2020/cgi-bin/WebObjects

2l Q- Goagle

cbObjectsDocs WOS.2 Reference Java 2 APE JavaMall APl

Click on a category below

Consumer Regional
Book Reviews, Car Survey, Africa, Asia, Europe...

Culture iological Sclences N
Arts and culture News, Black Interest bottomaquark
News Sports

Dow Jones 30 AthlonSports:, Baseball, Basketball...
Alcoa, American Express, Boeing... Technology

Einance ASP News., Hardware, Software
Banking News,

General

Charities News.

Your browser will be redirected to the MyHomePage direct action, which displays

Developing Applications with WireHose (Mac OS X) 92

http://127.0.0.1:2020/

Customizing the user interface

the current WHMainPage component. This entry in the layout dictionary causes your
MainPage component to be used instead of the default WHMainPage:

defaults = {
wrapper = {

I
pages = {

WHMainPage = {
pageName = MainPage;

Adding keyword searching

Next, you'll add a search box so users can search items and feeds by keywords. The search

box will be added to the Wrapper component so it will be available on all pages by default.

Adding the search box

1. Open Wrapper.wo in WebObjects Builder.

1000 Dwapnerwo :
(®[0](@|[B[1]u[T]|[3] E| N BILEEERErEEEES
] 2] [o122 © | =) @))6) 2] 6o 58]

Eéa&

wiréhose €22
> < .

Wrapper
application
session >
@string
BuserCanCreate

==Y

@userCanDelete -
@userCanEdit L
DuserCanView

Edit Source v|

2.Choose Custom WebObject from the WebObjects menu.
3. For "WebObijects class to use:" type WHSearchBox, and click OK.

Developing Applications with WireHose (Mac OS X) 93

Customizing the user interface

30 (6] & Wrapper.wo
[®[0]|[@|[B] 1]u]T|[3] E] None BILEEEREENEES
NECGEE R E LD CGE]

Save completed

36 [FSearcreax] 56|
E&

?r(-hlllb "y ‘
lerelu:bse@J@|

Wrapper
application
session
Pstring
PuserCanCreate
@userCanDelete
PuserCankEdit
@DuserCanView

Edit Source vl

vv!

«

4. Reload the page in your browser.

B HelloWorld e
i i | A A]@ € http://127.0.0.1:2020/cgi-bin/WebObjects/ = Q- Goagle
__ [0 Roundup Wwe WO5.2 Ref Jwva2 APL JavaMal APl

Search the news:

Type some keywords and click "search.”
Example: "boeing or airbus not crash”

Search)
Or click here to browse...
Click on a category below
Consumer Regional
Book Reviews, Car Survey, Africa, Asia, Europe...
Cardening... Science
Culture Biological Sciences News.
Arts and culture News, Black Interest bottomquark
R Sports.
f_‘man.m_ ASP News, Hardware, Software

Customizing the search prompt
The default prompt for WHSearchBox isn't suitable for Hello World, so next you'll change it.
WireHose has extensive localization support which allows you to control at a very fine level

how strings are localized for particular components, languages, pages and areas. You can also

define non-localized strings in the layout dictionary, which is the approach we'll take here.

Note: See the WHSessionHelper reference documentation for details about WireHose localization support.

WHSearchBox defines three strings, called "search”, "prompt" and "orClick ToBrowse".

Developing Applications with WireHose (Mac OS X) 94

Customizing the user interface
You'll override just the prompt string.

1. Find this entry in the layout dictionary:

WHSearchBox = {
showBrowsePrompt = YES;

3
Change it so it reads:

WHSearchBox = {
showBrowsePrompt = YES;
strings = {
prompt = "Search feeds: ";
h
I3
2. Relaunch Hello World and reload the page in your browser.

m m 1m @ A http://127.0.0.1:2020/cgi- bm/WehOb,eus/

mhﬂsbou WOS5.2 Reference Java 2 API)3

Search feeds: (Search)

Or click here to browse...

Click on a category below

Consumer Regional
Book Reviews, Car Survey, Africa, Asia, Europe...
g!!lg re Bi ical Sci \
Arts and culture News, Black Interest bottomquark
News sports.

Einance

ASP News, Hardware, Software

Developing Applications with WireHose (Mac OS X) 95

Customizing the user interface

Customizing the search box on specific pages

Since the main page and the tag driller page in Hello World already allow users to browse
through available resources, the "Or click here to browse..." link is redundant on those pages.
WHSearchBox lets you control whether this link is shown via its showBrowsePrompt

binding.

Ordinarily you'd set the showBrowsePrompt to false if you were to embed the search box
directly into the main page and tag driller page. But in this case, the search box is embedded

into the wrapper, and Hello World doesn't even have its own tag driller page component

anyway.

Another technigue might be to add a method to Wrapper.java which returns true or false

depending on the current page. This method might look like this:

public boolean showBrowsePrompt() {
return (context().page() instanceof MainPage ||
context().page() instanceof WHTagDrillerPage);

or this:

public boolean showBrowsePrompt() {
return ("WHMainPage".equals(helper().currentPage()) ||
"WHTagDrillerPage".equals(helper().currentPage());

However, this approach can be cumbersome to maintain. WireHose provides an alternative
approach, which has the advantage of not requiring custom code: resolving the binding

through the layout dictionary.

This entry in the layout dictionary sets WHSearchBox's showBrowsePrompt to true in all

areas on all pages in all layouts by default:

defaults = {

WHSearchBox = {
showBrowsePrompt = YES;

Developing Applications with WireHose (Mac OS X) 96

Customizing the user interface

You'll modify the layout dictionary so showBrowsePrompt resolves to false on the main page

and the tag driller page.
1. First, set it for the main page. Find this entry in the layout dictionary:

WHMainPage = {
pageName = MainPage;

Change it so it reads:

WHMainPage = {
pageName = MainPage;
WHSearchBox = {
showBrowsePrompt = NO;

2. Next, set it on the tag driller page. Find this entry in the layout dictionary:

WHTagDrillerPage = {
pageName = WHTagDrillerPage;

Change it so it reads:

WHTagDrillerPage = {
pageName = WHTagDrillerPage;
WHSearchBox = {
showBrowsePrompt = NO;

3. Reload the page in your browser.

Developing Applications with WireHose (Mac OS X) 97

Customizing the user interface

"6*0"6” HelloWorld R
n . - Q- Coc

I 4 > l@ A A ‘ @ €A http://127.0.0.1:2020/ cgi-bin/WebObjects/ |Q Co

Ew WebOb) WO5.2 Ref Java 2 AP JavaMall AP

Search feeds: (Search)

Browsing resources...
Top : Content : Science

Click on a category below

Biological Sciences News
bottomquark

Another Heart Defect Gene found -~ (bottomguark)
New Dino IDed -~ (bottomquark)
mproving Touch -~ (bottomguark)

is Firs i i == (hottomquark) ~

.

_Drivina While Thinkina -~ (hottamauark) Y
© Display & menu

How this works: WHSearchBox includes a WOConditional to determine whether to show the browse
prompt. The conditional's condition is bound to showBrowsePrompt. WHSearchBox.java defines this
method:

public boolean showBrowsePrompt() {

return booleanForBinding("showBrowsePrompt");

If WHSearchBox's showBrowsePrompt binding is bound directly to true or false, WHComponent's
booleanForBinding method will return that value. But if the binding is left unbound,
booleanForBinding will resolve the value via the layout dictionary.

You can use this technique in your own components. And if you're resolving simple string bindings, you
don't even have to implement a method in your code —— WHComponent will resolve the value via the layout
dictionary automatically. See the reference documentation for WHComponent for details.

Developing Applications with WireHose (Mac OS X) 98

Customizing the user interface

Removing the search box from a specific page

The WHSearchResultsPage component includes a search box by default.

MO e HelloWorld S
@ A A l @ A htp://127.0.0.1: 2020/cgi-bin/WebObjects/ ’(
@:‘ WOs.2 Java 2 AP JavaMall API
Search feeds: cars or trucks (Search

Or click here to browse
Your keywords matched 13 recent items.

Search feeds: cars or trucks (search)
Or click here to browse...
Mazda Hits Home Run With RX-8 Styling, Price Point. -~ Mazda hit the sweet spot

when it debuted the all-new, rotary-powered RX-8 sports car m]anuary at the
North American International Auto Show in Detroit. (C;

Ma lea All-New Four- r Four- r £ r'M RX-8'. -~
Mazda Motor Corporation today announced the domestic launch of the Mazda
RX-8, the new four-door four-seater sports car powered by an all-new rotary
engine, available at Mazda and Mazda Anfini dealers throughout Japan. (Cars
Everything)

e ; Adis Fi
I ission For P Cars, - (Cars E -

200372004 Toyota Full-line Pricing. -~ Note: Prices are manufacturer?s suggested
retail prices (MSRP) and do not include delivery, processing and handling fee which

is $510 for light trucks and $485 for passenger cars (Cars Everything) v

This interferes with Hello World's user interface because a search box is already included
within the wrapper. In this step you'll remove the search box through another entry in the

layout dictionary.

1. Find this entry in the layout dictionary:

WHSearchResultsPage = {
pageName = WHSearchResultsPage;
showSearchBox = YES;

Change it so it reads:

WHSearchResultsPage = {
pageName = WHSearchResultsPage;
showSearchBox = NO;
%
2. Reload the page in your browser.

Developing Applications with WireHose (Mac OS X) 99

Customizing the user interface

5 e HelloWorld B
)] A A]@ @ hitp://127.0.0.1:2020/ cgi-bin/WebObjects/ = Q- Google
) WebObj WOS5.2 Ref Java 2 AP Wmm
— 2

Search feeds: space (Search)

Or click here to browse. ..

Your keywords matched 12 recent items.

i i i = in -~ Space.com Jul
92003 11:02PM ET (Boston News)

Everett firm leases space from Boeing -~ Seattle Times Jul 9 2003 8:25AM ET
(Boeing)
ky To Provi lgium And Holland With Two-\Way Br nd -- Space Daily Jul &

92003 11:41PM ET (Benelux News)

Europe's Space Image Bank Opens For Business -~ Space Daily Jul 9 2003 11:41PM
ET (Banking News)

Ep 13 Golden Girl -~ 25 May -~ Landscape designers from Patio have created an
innovative shelving system for Betty to display and work on her many plants. The
limited space in adjoining courtyards inspired Patio to create a vertical garden for
ease of maintenance and to introduce ... (Backyard Blitz)

Yes, even more space news,.. -- (Ars Technica)

e space news... —- (Ars Technica)
B

<l

How this works: Just like WHSearchBox, the WHSearchResultsPage includes a WOConditional to
determine whether to include a search box. The conditional's condition is bound to showSearchBox. Just
like WHSearchBox.java, WHSearchResultsPage.java defines this method:

public boolean showSearchBox() {

return booleanForBinding("showSearchBox");

However, since page-level components are never embedded in another component, you can't set any
bindings directly. Resolving page-level bindings through the layout dictionary lets you customize page

components without writing any code.

Developing Applications with WireHose (Mac OS X) 100

Adding personalization

In this section, you'll build a custom tag driller page, which allows guest users to click on an
"add this to my page" when they find a category they like, and receive a signup page. This
page will validate the user's login and password, and create a new user in the database. Once
the new user has been inserted into the database, you'll create a new custom fetcher which

will display items from the category the user selected.
Add this to my page

WHTagDrillerPage determines whether or not to show an "add this to my page" button by
calling WHApplicationHelper's userCanEditObject method, with the user as the object

in question. By default, the guest user isn't permitted to edit anything, so you'll override that
behavior by implementing a method from the WHApplicationHelper.Delegate interface.

1. Uncomment this line in Application.java's constructor:

WHApplicationHelper.setDelegate(this);
2. Add this method:

public boolean userCanEditObject(WHUser user, Object object, WOContext context) {
if (user.isGuest() && user.equals(object) &&
"WHTagDrillerPage".equals(context.page().valueForKey("pageName"))) {
return true;
}else {

return super.userCanEditObject(user, object, context);

When the tag driller page checks to see if the user can edit itself,
WHApplicationHelper will call this method, and it will return true, so the button will
be displayed.

3. Build and launch the application, then open this URL in your browser:

http://127.0.0.1:2020/
4.When you browse to a tag which has matching resources, the "Add this to my page"

Developing Applications with WireHose (Mac OS X) 101

http://127.0.0.1:2020/

Adding personalization

will appear.

GYa)s) HelloWorld pens:
(<. >]@ A Al O | Ahup://127.0.0.1:2020/cgi-bin/WebObjects/ & Q~ Coagle \‘
m WebOb) WOS5.2 Ref Java 2 APl JavaMall API »

Browsing resources...

(Add this 1o my page!

i
|
Search feeds: | (Search) l

Top : Content : Science

Click on a category below

Biological Sciences News

bottomquark
Another Heart Defect Gene Found -- (bottomqguark)

New Dino IDed -~ (bottomauark)

<1 1

In the next section, you'll build a custom subclass of WHTagDrillerPage so Hello

World can create a new user when the button is clicked.
Building TagDrillerPage

The "add this to my page" button is bound to WHTagDrillerPage's addTag method. In this
step, you'll subclass WHTagDrillerPage and override the addTag method so that it returns a
signup page if the current user is a guest.

Because the layout dictionary may specify that pages may be substituted in a particular
layout, here we'll use the session helper's nameForPage method to determine the actual
page class to return from addTag().

1. Select the Web Components group in the Files pane.

2.Choose New File... from the File menu. Scroll down to the WireHose Page template,
and click Next.

3. Name it TagDrillerPage, add it to the Application Server target in the Hello World
target, and click Finish.

4. Edit TagDrillerPage.java so it reads like this:

public class TagDrillerPage extends WHTagDrillerPage {

public TagDrillerPage(WOContext context) {

Developing Applications with WireHose (Mac OS X) 102

Adding personalization

super(context);

public boolean shouldUseAlternateTemplate() {

return true;

public WOActionResults addTag() {

if (helper().user().isGuest()) {

SignupPage nextPage =
(SignupPage)pageWithName(helper().nameForPage("SignupPage"));

nextPage.setTag(tag());
return nextPage;

}else {
return super.addTag();

}
5. Find this entry in the layout dictionary:

WHTagDrillerPage = {

pageName = WHTagDrillerPage;

Change it so it reads:

WHTagDrillerPage = {

pageName = TagDrillerPage;

WireHose will now use TagDrillerPage instead of WHTagDrillerPage.

How this works: In this example, we're subclassing WHTagDrillerPage to modify behavior, but not
duplicating any of its HTML or .wod definitions. The page will still look just like a WHTagDrillerPage,
though.

The key is the shouldUseAlternateTemplate method. Since it returns true here, TagDrillerPage will
ignore its normal HTML and .wod definitions, and instead get them from two methods called

Developing Applications with WireHose (Mac OS X) 103

Adding personalization

templateHTMLString and templateDefinitionString. By default, these methods will return
the HTML and .wod from the component's superclass. So TagDrillerPage ends up using
WHTagDrillerPage's template.

You can override templateHTMLString and templateDefinitionString to return strings from
any source. A very flexible and powerful technique is to store HTML and component definitions in a
database.

Building SignupPage

The SignupPage component takes the current tag from the TagDrillerPage, then asks the user
to enter a login and password, and re—enter the password. The prompts and messages will be
localizable instead of hard—coded into the page's HTML. In addition, the fetchMatchingUsers

method (which checks to see if a user has typed a login which is already in the database) and

the createUser method both dynamically resolve the current user entity.
Adding the component

1. Add this entry to the layout dictionary in the pages section:

pages = {
SignupPage = {
pageName = SignupPage;
h
WHMainPage = {

2. Select the Web Components group in the Files pane.

3.Choose New File... from the File menu. Scroll down to the WireHose Page template,
and click Next.

4. Name it SignupPage, add it to the Application Server target in the Hello World
target, and click Finish.

5.Choose New File... from the File menu. Scroll down to the WireHose Strings File
template, and click Next.

6. Name it SignupPage, add it to the Application Server target in the Hello World

target, and click Finish.

Developing Applications with WireHose (Mac OS X) 104

Adding personalization

Building the Ul

SignhupPage is a typical WebObjects component, with the exception that the message prompt
and field and button labels will be localizable rather than hard—coded into the HTML or Java

code. You can resolve localized strings with a simple @string.key or self.@string.key.

Note: Other useful bindings provided by WHComponent include @userCanEdit.keyPath and
@userCanView.keyPath, which return true or false by querying the application helper (and its delegate, if
set) as to whether or not the object identified by keyPath in the current context can be edited, viewed or
deleted by the current user. The keyPath is any keypath which is currently valid, so you can bind things like
@userCanEdit.helper.editingObject to a WOConditional.

Note: WebObijects Builder on Windows will not allow bindings which start with an "@", such as
@string.key, so WireHose also supports self.@string.key. There are no performance penalties for using
WHComponent's self.@string.key or self. @userCanView.keyPath bindings over @string.key or
@userCanView.keyPath.

1. Add this line to SignupPage.java:

public String message;

2. Open SignupPage.wo in WebObjects Builder.

3. Select the inner WOSwitchComponent and delete it.

4. Inside the remaining WOSwitchComponent, add an H1 heading.

5. Inside the heading, add a WOString and set its value to message. This will be the
prompt for the signup page.

eo0e « SlgnupPage.wo
[S[0][@][B[1u[T|[3][E|(ve B[M[E[E[E-[B[I[E[FF]=
() [][]]] @1 [Y)] B 9) 8 5 o S 66

WOSwi berComporant

> BE=]®) G

<documents point

SignupPage
@viewableObjects
helper >
login
maceans

Edit Source vl

6. Change SignupPage's constructor so it reads like this:

public SignupPage(WOContext context) {

Developing Applications with WireHose (Mac OS X) 105

Adding personalization
super(context);

message = helper().stringinComponent(this, "signup");
}
7. Add this line to SignupPage.strings:

signup = "Sign up for a new account";

8. Underneath the heading in SignupPage.wo, add a WOForm. Set its action to
createAccount, and set multipleSubmit to true.

9. Delete the text inside the form and add a new table. Make it 4 rows, 2 columns, 0

border, 6 spacing, 0 padding. Uncheck both "First row cells are header cells (<TH>)"
and "Second row is wrapped in a WORepetition". Click OK.

@00 . SignupPage.wo

[S[6][@|[BrTu[TI[3][E|Ge B M=[E[E[-[B]I]]]
""" CILEEICEC]

> B @))

Cen Cell
Cen Cell
Cen Cell
Cen Cell

L

<document > [SEeTEchComponenta] Bt

SignupPage
@viewableObjects |
helper >
lagin @
message ~
.
pageName
v
naccwar, A
Edit Source v

10. Add three WOString components to the left column in the first three rows of the
table. Set the value for the first to @string.login. Set the value for the second to
@string.password and the third to @string.passwordAgain

11.Add these lines to SignupPage.strings:

login = "make up a user name";

password = "make up a password";

passwordAgain = "type password again";

signupButton = "Sign Up";

wantCookie = "save my login and password in a cookie";

12.Add these lines to SignupPage.java:

public String login, password, passwordAgain;
public boolean shouldSaveCookie = false;

13. Select the right column of the first row of the table, and add a WOTextField and set

Developing Applications with WireHose (Mac OS X) 106

Adding personalization

its value to login

14.1n the second row, add a WOTextField and set its value to password. Choose the
Static Inspector on the Inspector pallete, and click Password Field (invisible typing)

15. In the third row, add a WOTextField and set its value to passwordAgain. Make this
a password field also.

16.In the last row, add a WOCheckBox and set its checked to shouldSaveCookie. Add
a WOString and set its value to @string.wantCookie

17.Select inside the form, after the table, and choose Custom WebObiject from the
WebObjects menu. For "WebObjects class to use:" type WHImageButton, and
click OK.

18. Set the image button's action to createAccount, set its filename to
helper.@itemInPage.signupButton, set its framework to

helper.@itemInPage.framework and set its label to @string.signupButton

000 ——___0 SlonupPagevo___
'B[0]/@![B]1U[T]|[3] E](Nere B

BEEEREIENEE
ELECEGEE

[(]| 21| 21| i 2] © B))]

{8 [FOSwiterDongrrart]
> EE=® G
Fagin
[R=Ering pazzwora) @) Foassward I
Poasswordagain
4]
3]

SignupPage
application
session
@string
@userCanCreate

=)

@userCanDelete
PuserCanEdit
Edit Source vi

Note: Since WireHose components can be used in any number of layouts, which may have special
graphical needs for buttons or links, WireHose includes the WHImageButton component.
WHImageButton will render itself as a hypertext link, a linked image, a graphical submit button,

or a plain submit button, depending on whether it's currently in a form or not, and if its filename
binding resolves to a string or not. Bindings such as filename and framework are typically

resolved through the layout dictionary rather than being bound directly.

Developing Applications with WireHose (Mac OS X) 107

Adding personalization

Writing the code

Next, you'll add the code that makes the signup page work.

1. First, add this code to SignupPage.java so the signup page knows which tag was

selected in the tag driller page:

private WHTag _tag;

public void setTag(WHTag value) {

_tag = value;

public WHTag tag() {
return _tag;
}
2. SignupPage will need to sanity check user input. The createAccount method will

use an errorMsg method to return error messages to the user:

public WOActionResults errorMsg(String msg) {
message = helper().stringlnComponent(this, msg);
password ="";
passwordAgain = "";
return context().page();
}
3. Add these lines to SignupPage.strings:

missingField = "Please enter all fields";
passwordMismatch = "Your password did not match";
reservedID = "Sorry, that login is reserved";

4. Part of the sanity checking is to verify that the user hasn't entered a login that was

already used in the database. Add this method to SignupPage.java:

private NSArray fetchMatchingUsers() {
EOQualifier g = new EOKeyValueQualifier(
"login”, EOQualifier.QualifierOperatorEqual, login);
EOFetchSpecification fs =
new EOFetchSpecification(WHApplicationHelper.userEntityName(), g, null, true, true, null);
return session().defaultEditingContext().objectsWithFetchSpecification(fs);

Developing Applications with WireHose (Mac OS X) 108

Adding personalization

And finally, the createAccount method itself:

public WOActionResults createAccount() {

Il sanity check user input

if (login == null || password == null || passwordAgain == null ||
".equals(login) || "".equals(password) || "".equals(passwordAgain)) {
return errorMsg("missingField");

/I make sure passwords match
if (Ipassword.equals(passwordAgain)) {
return errorMsg("passwordMismatch");

/l make sure login wasn't already used
NSArray users = fetchMatchingUsers();
if (users.count() !=0) {

return errorMsg("reservedID");
}else {

/I never know what the current user entity might be

WHUser user = (WHUser)WHEnterpriseObject.createAndInsertinstance(
session().defaultEditingContext(),
WHApplicationHelper.userEntityName(),
WHApplicationHelper.defaultAffiliate());

user.setDateLastLogin(new NSTimestamp());
user.setLogin(login);
user.setPassword(password);
session().defaultEditingContext().saveChanges();

/I replace the guest user for this session
helper().setUser(user);

WHTagDrillerPage nextPage =
(WHTagDrillerPage)pageWithName(helper().nameForPage("WHTagDrillerPage"));

nextPage.setTag(tag());

WOActionResults response = nextPage.addTag();

/I set a login cookie if the user asked for it
if (shouldSaveCookie) {

return helper().addLoginCookieToResponse(response.generateResponse());

Developing Applications with WireHose (Mac OS X) 109

Adding personalization

5. }else {

return response,

}
6. Build the application, launch it, and open this URL in your browser:

http://127.0.0.1:2020/
7. Browse through the content, and when you get to an interesting category, click the

"Add this to my page" button and create a new account.

HelloWorld

‘

Search feeds:

Browsing resources...
Add this to my page!

Content : Consumer : Gardening : ' e [
Click on a cat bel m m @ € http://127.0.0.1:2020/cgi- bm/\O (‘
on a catego ow i
egen L p WO5.2 Refe Java 2 AP JavaMail API »
Search feeds: (Search)

About.com Botany Or click here to browse..,

About.com Landscaping

About.com Roses H

i " Sign up for a new account

Burke’s Backyard

make up a user name stanley
make up a password seseine

ro In i : i == AutoRewind hose reel - | type password again
received this item last week and hooked it up the same day. The installation - logi d di i
instructions are very clear. It took about 10 minutes from start to finish. 1 —/save my login and password in a cookie
hooked up a new water hose that is 125 feet long. | was amazed at how ...

rdd Bli
Ep.12 Asian Inspiration - 18 May -~ Scott built a sleek new deck off the side of 7 |ﬁ;;ﬂ;§@
thy house to encourage Julia, Allison and their frlends out into the new garden. ahaaisteite- J
——h e atallad ioncnlaal L

8. After creating your account, you'll be returned to the WHEditObjectPage, where you

can adjust settings on the newly-created channel.

Developing Applications with WireHose (Mac OS X) 110

http://127.0.0.1:2020/

Adding personalization

Search feeds:

Or click here to browse...
({Remave) (Save Changes)
topic name (Gardentn)
show name

match these keywords
this topic is on the [main 7%} of the page

categories included Content : Consumer : Gardening : (remove)
within this topic

don't show items older @
than
sort items | newest first E
limit items to [10 izems 7%}

when this topic matches audio or video| combine into main presentation 1+

‘wlrehose

Note: Several WireHose components, including the WHEditFetcher shown here, have a binding
called hideDetails. If this binding resolves to true, then WHEditFetcher will show an abbreviated
version of itself. See the NewsDemo sample application for an example which allows the user to

control this with a pair of hide details/show details controls.

Developing Applications with WireHose (Mac OS X) 111

Finishing the user interface

The final step in building Hello World will be to clean up the user interface and add some
navigation. You'll add a login panel so users with accounts can login, and customize the view

for logged in users.
Adding a login panel

Now we'll add a login panel to Hello World. The panel will be added to the wrapper so it will

show up on every page.

1. Open Wrapper.wo in WebObjects Builder.

2. Add a WOConditional, and set its value to helper.user.isGuest

3. Select inside the conditional, and choose Custom WebObject from the WebObjects
menu. For "WebObijects class to use:" type WHLoginBox, and click OK.

f e O . Wrapper.wo
[0]@][BL11UIT| 3] & (v) [M|=[=lEl- (B2 LI
BECEEE RN EEE EEEEEEREGEE
[[WLoginBox] Bk
he Lper Juser, 12Gusst
B [misaarcreox] 3
[Wiareavropper]
e
V"imt':“' <>
wirehose Sasf®/
B <A
WHSessxonHelper WHUser
“curréntWrapper o channels »
editingObject cookles »
firstLoginAttempt currentlayout
nameForCurrentPage m dateAdded >m
returnPageName ot dateLastLagin >
searchString 4 IsGuest
serverName v login
Edit Source 11 (5 “ <« >

4. If you haven't quit and relaunched Hello World, open this link in your browser to

logout the current user:

http://127.0.0.1:2020/cgi-bin/WebObjects/HelloWorld.woa/wa/Logout
5. Now you can use the new login box to sign in to the account you created earlier.

Developing Applications with WireHose (Mac OS X) 112

http://127.0.0.1:2020/cgi-bin/WebObjects/HelloWorld.woa/wa/Logout

Finishing the user interface

806 HelloWorld . !
[« > J[@][a A}] @hup11127.0.0.1:2020/cqi-binWebe® |=(Qr Coogle I
=] Roundup WebObjectsDocs WOS5.2 Reference Java 2 API JavaMail APl »

—]

Members, login:
your ID
stanley

your password

! Remember my ID and password

Search feeds: (‘search)

Click on a category below

Consumer Regional
Gardening... Science
Culture Riological Sciences News,
Arts and culture News. Black bottomquark
Interest News Sports.
Dow lones 30 AthlonSports:, Baseball, i
Displiy & menu -3

Customizing the main page

We'll create a different appearance for the main page depending on whether the user is a guest
or not. The page guest users see will be dominated by a Yahoo-style collection of categories,

while the page registered users see will be dominated by their selected topics of interest.

1. Open MainPage.wo in WebObjects Builder.

2. Select the WHTagDriller component, and add a WOConditional around it. Set its
condition to helper.user.isGuest

3. Add another WOConditional. Set its condition to helper.user.isGuest and set its
negate to true

4. Inside the conditional, add a new table with 1 row, 2 columns, O border 6 spacing and
0 padding. Uncheck both "First row cells are header cells (<TH>)" and "Second row
is wrapped in a WORepetition" and click OK.

5. Select the left cell, and choose Custom WebObject from the WebObjects menu. For
"WebObijects class to use:" type WHArea, and click OK. Set its areaName to
"main”

Note: The WHArea component iterates over the user's channels which have been mapped to its

areaName value, and renders each with a WHSwitchRenderer. Hello World's layout has just one
area, named "main".

6. Select the right cell, and choose Custom WebObject from the WebObjects menu.
For "WebObijects class to use:" type WHTagDriller, and click OK.
7. Set its maxChildTags to 0, numCols to 1 and its tagPath to "Content"

Developing Applications with WireHose (Mac OS X) 113

Finishing the user interface

eoce & MainPage.wo
(@] [B] 1TU[T][3][] (None —JI“'
L EEE BRI IR

SEEICIEOES
TR

Eﬁ
S(retper.user .1s0uest]

8 [Fres] 38 [[FTagte T TTer] B
B (Fetper-user -istuest]

<Jocument> H0SwItchCosponent> [SConalt 1ona JBoint
MainPage

application >
session >m
string

@userCanCreate

@userCanDelete e
PAuserCanEdit

s mel e\ fiase
Edit Source v|

8. If you haven't logged in yet, login, or just reload the page in your browser.

€ HelloWorld g
mgm A A] @ http://127.0.0.1:2020/cgi- bm/wmm{
m'“ WO5.2 Refl Java 2 AP mum‘m
Search feeds: (Search)
Click on a
Gardening category
& below
Hyd justries 2004 200" AytoRevsind o
-~ AutoRewind hose reel - | received this item last Consumer
week and hooked it up the same day. The Cultur
installation instructions are very clear. It took
about 10 minutes from start to finish. | hooked up Dow jones
a new water hose that is 125 feet long. | was 30
amazed at how ... (Backyard 8litz) Finance
T
£0 12 Asian Inspiration - 18 May -~ Scott built a m, ”
sleek new deck off the side of the house to Industey
encourage Julia, Allison and their friends out into Internet
the new garden, Treated pine posts Regional
(H4,90x90mm) installed vertically inground in science
concrete support bearers (H3,190x45mm) Sports
connected with ... (Backyard Blitz)
Technology

£ 13 Colden Girl - 25 May -~ Landscape
designers from Patio have created an innovative
hahann cuctam far Rathu ta dicnlav andauark an

Y

Adding navigation

As a final step in the development of Hello World, we'll clean up the wrapper a bit and add
some havigation.

1. Open Wrapper.wo in WebObijects Builder

2. Add a table, with 1 row and 2 columns.

3. Select the WHLoginBox, and cut and paste it into the left cell of the table. Set the
width of the cell to 25 percent.

4. Remove the WOConditional which used to wrap the login box.

Developing Applications with WireHose (Mac OS X) 114

Finishing the user interface
5. Cut and paste the WHSearchBox and WHAreaWrapper into the right cell. Set the
cell's width to 75 percent.
6. Select the entire left cell by clicking on the <TD> in the path view.

1806 Swaperwo
§ E [FIT“H—T E] E { None a ql
o

RECEEEENPERE C LR EEREGEEER

B8 [WSeorcnox] Fe)
WCcepcnent Content | B

rrrrrrrrrr

wlrehose@ |

B

S0Y> <TAELE> <TR>[ST03]

Wrapper
application >
session > m
@string
@userCanCreate
@userCanDelete
@userCanEdit

Edit Source v
e —-

7. Add a WOConditional to wrap the entire cell (not just its contents), and set its

condition to helper.user.isGuest
8. At the top of the page, add a WOActivelmage. Set its actionClass to
"MyHomePage", set its framework to "WireHoseLayoutSupport", and its
filename to "wirehose_small_white.gif". Add a binding named border and set it to
0.
9. To the right of the image, type Welcome, add a WOString with its value set to
helper.user.login and type an exclamation point and (Logout).
10.Wrap the (Logout) text in a WOConditional. Set its condition to
helper.user.isGuest and its negate to true.
11.Select the word Logout and add a WOHyperlink with its actionClass set to

"Logout".

Developing Applications with WireHose (Mac OS X) 115

800 & Wrapper.wo

Finishing the user interface

(Sj[0](@][B] 1 u[T|[3] &] (o

HEEREC]

=SS L

L]
I

[-

>
.0 BEEm—E
e ser et

([@Logoul®)) _
E]h

B [Searcnsox] BE)

S8 omporenCortert] 59

B8 [Eregieer] 3

& &rehose@ @

£EN> <TAELES <TR> <T0> [Sblkrecvroppersypoint

WHUser

12.Reload the page and explore Hello World.

WHSessionHelper

- HrstloginAttempt P cookies »
nameForCurrentPage i currentLayout
returnPageName i dateAdded > [‘
searchString L dateLastLogin >
serverName 0 IsGuest g
session 4 login i:
user > password v

Edit Source [<

Q Welcome, guest!

Members, login:
your 1D

Search feeds:

Click on a category below
your password

' Remember my ID
and password

Developing Applications with WireHose (Mac OS X)

116

Finishing the user interface

HelloWorld

p
Q Welcome, stanley! (Logout)

Search feeds: | (Search)

@ Click on a

Gardenin, category
e below

| justries 2004 200" AutoRewind Hose
Reel -~ AutoRewind hose reel - | received this Consumer
item last week and hooked it up the same day. Cultur
The installation instructions are very clear. It
took about 10 minutes from start to finish, | Dow Jones
hooked up a new water hose that is 125 feet 30
long. | was amazed at how ... (Backyard Blitz) finance
£0 12 Asian Inspiration - 18 May -~ Scott built a Genaal
sleek new deck off the side of the house to Industey
encourage Julia, Allison and their friends out Internet
into the new garden. Treated pine posts Regional
(H4,90x90mm) installed vertically inground in Science
concrete support bearers (H3,190x45mm) o
connected with ... (Backyard Blitz) Sorts :

Developing Applications with WireHose (Mac OS X) 117

Further exploration

You've now completed building the Hello World application. In the process, you've learned
about important WireHose business logic concepts such as taggable and indexable resources,
channels, fetchers and tags. You've modeled WireHose resources and built custom renderers

to show them properly.

You also put into practice key concepts that give WireHose applications their user interface

flexibility, such as the session helper, the layout dictionary, pages, wrappers and localization.

There's much more to WireHose than what's been covered so far. This section will describe
some of the other features available in WireHose that are beyond the scope of this tutorial

Component channels
WHComponentChannel allows you to use any WOComponent as a channel.
Qualifier fetchers

WHQualifierFetcher instances are channels that fetch enterprise objects based on an arbitrary
qualifier. Instead of fetching resources based on their tags or keywords, a qualifier fetcher
uses a string such as "lastName = 'Weber' AND supervisor.firstName = 'Stanley™. Subclasses
of WHQualifierFetcher can provide sort orderings and qualifier bindings (enabling queries

such as "lastName = %@").

Qualifier fetchers are especially good for creating enterprise portals since you can easily
create a collection of channels that give users access to widely varying enterprise data such as
recent sales, inventory, current shipments, expiring contracts, etc., without having to write

any WireHose—-specific business logic.

Developing Applications with WireHose (Mac OS X) 118

Further exploration

Streaming resources

Resources in WireHose are generally divided into two groups: streaming resources, which are
those which have a duration when rendered, such as video or audio clips, and non—-streaming

resources, which are everything else.

WHTagFetcher has special support through its groupStreaming property for determining how

to render streaming resources. There are three different options available:

« Allow the user to view individual streaming resources matched by this fetcher.
» Present all streaming resources matched by this fetcher in a single presentation.
« Combine the streaming resources from this fetcher, and all others with the same

setting, into a single presentation for the user.

Revision tracking

WHRevision is a subclass of WHTag which provides support for versioning WHTaggable
objects. A WHRevision tag represents a particular resource, and can be assigned to another
resource to indicate that a resource is a revision of another. Since resources can have multiple
tags, a given resource can be a revision of multiple other resources, and a given resource can

have multiple revisions (and revisions of revisions, and so on).

WHRevision provides three key methods for handling versioning: makeRevision makes
one resource a revision of another; revisionsForResource returns all revisions of a
particular resource; and originalsForRevision returns the array of objects a particular

revision is a revision of.

Developing Applications with WireHose (Mac OS X) 119

Further exploration

Access control

The WireHoseEngageSupport framework is an optional collection of classes which work
together to provide roles—based access control for taggable objects.

WHEnNgageTag is a WHTag subclass which implements WHTaggable and WHIndexable to
implement access control.

WHEnNgageUser is a subclass of WHUser. Users can belong to multiple groups, and also have

their own group so you can grant permissions directly to an individual user.

WHGroup is a tag whcih represents groups of users which have permission to perform
operations on taggable objects. Groups can be arranged in any hierarchy required;
membership in a group implies membership in all of its ancestor groups. Everyone is a
member of the "Public" group.

WHPermission is a tag which is assigned to taggable objects to indicate that members of a
specific group can perform a specific operation on the tagged objects. Permissions are
inheritable by default; if an inheritable permission is assigned to a tag, then all resources
tagged with that tag, or any of its descendent tags, will share the same permission as if it had

been assigned to each resource directly.

WHOperation objects represent a particular operation which can be exercised on a taggable
object, such as viewing, editing or deleting. Operations are hierarchical; the "Manipulate"
operation implies its descendents, "View", "Edit," "Delete" and "Assign". The "Assign"

operation models assigning tags to taggable objects.

Developing Applications with WireHose (Mac OS X) 120

Further exploration

Tag templates

WHEnNgageTag provides methods to use templates to create a collection of tags based on the
template at an arbitrary place in the tag hierarchy. In its most basic form, creating tags from a
template just duplicates the template's descendent tags.

Templates can be built from ordinary tags, but they achieve much of their power when used

in conjunction with WHGroupTemplate and WHPermissionTemplate tags.

A group template can have permissions associated with it to control who can view or edit the

template. The "assign" permission controls who can instantiate tags using the template.

In addition to having permissions assigned to a group template, you can also assign
permission templates. Permission templates are used to create permissions when the group
template is instantiated.

Group templates can have descendent group templates, which become descendent groups

when instantiated. You can assign permission templates to a descendent group template and
have the permissions apply to the descendent group when the parent template is instantiated.

Bookmarkable URLs

WireHose has several featurs which enable your applications to have clean, bookmarkable

URLSs such as "/WireHoseDemo/MyHomePage" and still provide personalized sessions.

Developing Applications with WireHose (Mac OS X) 121

Further exploration

Cookies

WireHose applications don't store sessionIDs in the URL unless the user has disabled cookies
in the browser. WireHose provides a mechanism for for automatically detecting whether
cookies are enabled in a client's browser, and controlling whether session IDs are visible in
URLs accordingly.

When called for the first time during a session, a WireHose direct action will check to see if
cookies should be enabled. If necessary, the browser will be redirected to the GotCookies
direct action, providing a session id in both the URL and via cookies. During the GotCookies
direct action, the session's storesIDsInCookies and storesIDsINURLSs are set appropriately,

and another redirect is issued back to the original direct action.

Rewrite rules

WHHyperlink is a replacement for WOHyperlink which includes support for URL-rewriting
similar to Apache's mod_rewrite. This rewriting is applied to URLs generated by your

application rather than incoming browser requests as with mod_rewrite.

You can provide a perl-style regular expression that gets applied to the URL, providing an
outgoing—URL counterpart to Apache's mod_rewrite (which is applied to incoming request
URLS).

For example, this rule

s'cgi—bin/WebObjects/WireHoseTest.woa/wa/Drill(?:\\?path=|)'Resources/'

will transform a URL like
http://www.wirehose.com/cgi—bin/WebObjects/WireHoseTest.woa/wa/Drill?path=Local%2FNews

into

http://www.wirehose.com/Resources/Local/News

Most WireHose components which generate links to direct actions, such as WHTagDriller or

Developing Applications with WireHose (Mac OS X) 122

Further exploration

WHNavigationBox, provide a rewriteRule binding. These bindings are usually resolved via
the layout dictionary.

Special components

WireHose includes a lot of reusable components. Here are a few of our favorites that weren't
used in the Hello World tutorial:

WHShowTagDataSource
Allows embedding a WHTagDataSource in a web page, through bindings such as
optionalTags and keywordString. You can set the optionalTags and requiredTags
bindings to an individual tag, arrays of tags, or a string or arrays of strings which will
be interpreted as tagpaths.

WHHTMLString
Renders HTML text, substituting for <WIREHOSE type=FETCHER
tag=tagPath fetchlimit=numltemsToDisplay> with the rendered
objects matched by the specified tag.

WHMatrixTable
WHMatrixTable displays an array of objects in a multi-column layout. It attempts to
be smart about the number of columns and rows it uses to render itself; this behavior
is controlled by several optional bindings. If all these are left unbound,
WHMatrixTable will set its rows & columns roughly proportional to the "golden
ratio".

Caching

Developing Applications with WireHose (Mac OS X) 123

Further exploration

WHCachingDataSource

WHCachingDataSource is an abstract class which provides all the necessary infrastructure for
fetching enterprise objects into a cache, returning subsets of objects from the cache, and
invalidating the cache when necessary.

If a caching datasource is created with an owner which implements the WHFetcher interface,
such as a WHTagFetcher, it will use its owner's values for its properties such as

fetchLimit. You can also instantiate a caching datasource and set the its properties

directly; this is useful when using a caching datasource as an EODataSource for a display

group, for example.

WireHose provides two concrete implementations, WHTagDataSource and
WHQualifierDataSource. You can create your own by implementing
fetchResourcesintoEditingContext, which will be called as necessary by

WHCachingDataSource itself.

WHConcreteFetcher

WHConcreteFetcher provides an abstract implementation of a channel which owns a caching
datasource. WireHose provides two concrete implementations, WHTagFetcher and
WHQualifierFetcher. WHConcreteFetcher is a full-service implementation of the WHFetcher

interface, and requires minimal customization to handle new fetching behavior.

ShouldInvalidateCache notifications

To prevent caches from becoming stale, WHFetcher defines the ShouldinvalidateCache
notification. Fetchers whose cache should be invalidated when a particular object changes can
register for these notifications. For example, WHTagDataSource registers for
ShouldInvalidateCache notifications for each of its optional and required tags, and will

invalidate its cache if any of its tags are changed.
For fetchers that deal with enterprise objects, the notification object will be the globallD of

the object which has changed; WHTag and the default implementation of the taggable
interface will automatically post these notifications for tags.

Developing Applications with WireHose (Mac OS X) 124

Further exploration

WHConcreteFetcher and its companion WHCachingDataSource provide an implementation
of the WHFetcher interface for fetching enterprise objects; they handle caching and

propagation of ShouldinvalidateCache notifications.
Multiple affiliates

WireHose has special support for creating and deploying large numbers of re—branded portals
sharing some common resources, as for example in an application service provider
environment, community publishing, or higher education.

WireHose provides built—in support for handling multiple sites from a single set of databases
via subentities. Most WireHose base entities, such as WHTag, WHTagFetcherFactory,
WHUser, etc., have an affiliate property, which is used to identify to which affiliate a
particular object belongs. The current affiliate name is controlled by the

WHDefaultAffiliate property

For large deployments, WireHose can make extensive use of entity inheritance, taking
advantage of the fact if an entity is not visible at runtime, any database rows described that
entity are simply unavailable to the application. This is a simple but effective way to partition
objects between separate application instances which share identical codebases and differ

only in configuration files or launch arguments.

For example, if you are deploying multiple news portals, users connecting to the Seattle portal
should only see Seattle—area traffic cams, and Portland users should only see Portland-area
traffic cams, but both should have access to national newsfeeds. WHEnterpriseObject

provides several methods for dynamically creating subentities at runtime, so you don't have to

manually model many common types of inheritance in EOModeler.

Developing Applications with WireHose (Mac OS X) 125

Further exploration

Affiliate—based inheritance

The most prevalent inheritance model used in WireHose is that of affiliate—based inheritance.
This approach is used by WHTag, WHUser, WHTagFetcherFactory, WHDrillFetcherFactory
and WHQualifierFetcherFactory, and can easily be used in your own resource and channel
factory entities.

In this approach, you define an attribute on your base entity called "affiliate”. This attribute
will be used with a restricting qualifier to identify subentities. The restricting qualifier for the
base entity is "affiliate = nil", and the restricting qualifier for an affiliate—based subentity
would be "affiliate = affiliateName". For example, given a base entity named "Picture" and an
affiliate of "Seattle", the subentity would be named "SeattlePicture” and the restricting

gualifier would be "affiliate = 'Seattle™.

As an alternative to the affiliate attribute, you can use an attribute called "entityType". If the
base entity has an attribute named entityType, the restricting qualifier would be "entityType =
entityName". This is the approach used by WHTag.

Automatic subentity creation

If the system property WHDisableAutoSubEntities is false, WHApplicationHelper uses
WHEnterpriseObject's createSubEntitiesForAffiliates to automatically create

subentities for a given list of affiliates for each entity which has an "affiliate" or "entityType"
attribute. You can override this behavior on a per—entity basis by including a
WHPreventAutoSubEntities = YES entry in the entity's userinfo dictionary. (If you

are not using the WireHoseLayoutSupport framework, as in a command-line tool, you will
need to call createSubEntitiesForAffiliates yourself.)

You can also create subentities at runtime which use multiple—table rather than single—table
inheritance. WHEnNterpriseObject's createSubEntity method lets you specify a

restricting qualifier as well as an external name (i.e., table name) for a subentity. Any
subentity created by WHEnNterpriseObject will have a WHCreatedSubEntity = YES

entry in its userinfo dictionary, and createSubEntitiesForAffiliates will not

create subentities for a given entity if it finds this. WHApplicationHelper posts a

notification before it creates subentities, so you can register for this notification if you

Developing Applications with WireHose (Mac OS X) 126

Further exploration

need to customize subentity creation.

The property WHUserEntityName controls which base entity WHApplicationHelper will
use when fetching and creating users. The actual entity fetched and created will be an
affiliate—based subentity of this entity for the default affiliate, if available. For example, if
WHDefaultAffiliate is "Seattle" and WHUserEntityName is "WHUser" (the

default), users and guest users will be of the "SeattleUser" entity if it exists.

You can override WHApplicationHelper's automatic subentity creation in several ways:

* If the property WHDisableAutoSubEntities is YES (or true),
WHApplicationHelper will not create any subentities during startup.

* Since WHEnNterpriseObject's subentity creation methods won't create a subentity if it
already exists, you can create subentities in response to the
ApplicationHelperWillFinishlinitializing notification, which is
posted before WHApplicationHelper creates any subentities.

< Add entries to the "autoSubEntities" key in your application's layout dictionary,
which will get created before WHApplicationHelper creates subentities for all
available affiliates. Each key in this dictionary is the name of a subentity to create,

and its associated value is a dictionary describing the subentity. For example:

MySpecialPicture = {
externalName = Picture;
restrictingQualifier = "(affiliate = 'MySpecial)";
parent = Picture;

Depending on how you have your inheritance set up, you can specify one or both of
externalName and restrictingQualifier.

Developing Applications with WireHose (Mac OS X) 127

Further exploration

Multiple affiliate best practices

The best way to handle multiple affiliates in your code is to not make any assumptions about
whether or not subentities are available. This section provides some techniques you should

follow in your own code.
Modeling entities

To model an entity which may become the parent of affiliate—based subentities, set the entity
so it is not abstract and does not have a restricting qualifier on the affiliate property.
WireHose will add the appropriate restricting qualifier to the parent entity when creating the
first subentity.

Creating objects

WHEnterpriseObject provides the

createAndinsertinstance(EOEditingContext, String entityName,

String affiliateName) utility method, which functions similarly to the one defined in
EQUitilities. The WireHose version provides an additional parameter, affiliateName, which is
used to specify the affiliate the newly created instance should belong to.

If there is an affiliate—based subentity available for the specified entity, then the returned
object will be of that entity, otherwise it will be of the specified entity. In either case, the
affiliate property will be set on the newly created object if the entity has a class property
named "affiliate".

Developing Applications with WireHose (Mac OS X) 128

Further exploration

Fetching objects

If you are fetching objects which belong to a specific affiliate, check for the existence of an

affiliate—based subentity like this:

EOEditingContext ec; // assume exists

EOFetchSpecification fetchSpec; // assume exists

String affiliateName = "MyAffiliate";

String entityName = "SomeEntity";

String entityToFetch =
WHEnterpriseObject.subEntityNameForAffiliate(entityName, affiliateName);

if (EOUtilities.modelGroup(ec).entityNamed(entityToFetch) == null) {
entityToFetch = entityName;

}

fetchSpec.setEntity(entityToFetch);

NSArray objs = ec.objectsWithFetchSpecification(fetchSpec);

Developing Applications with WireHose (Mac OS X) 129

	Table of Contents
	About this document
	Contents
	Related documentation
	About WireHose
	WireHose features
	WireHose architecture
	Core frameworks
	Additional frameworks
	Application structure

	Sample applications
	NewsDemo
	Conexiones

	About Hello World
	Syndicated content
	Aggregators
	Browsing and searching
	Personalization
	What WireHose provides

	WireHose business logic concepts
	Resources
	Tags
	Personalization
	Fetchers

	Getting started
	Before you begin
	Creating the project
	Creating the database
	Setting up OpenBase
	Setting up FrontBase

	Configuring Hello World for the database
	The adaptor dictionary
	Database and prototype frameworks

	Modeling the data
	Modeling feeds
	Creating RSSFeed
	Adding attributes
	Uniquing items

	Modeling items
	Creating RSSItem
	Adding attributes
	Uniquing items

	Relating feeds and items
	Relating items to feeds
	Relating feeds to items

	Generating SQL and Java
	Generating SQL and Java for feeds
	Generating SQL and Java for items
	Using the layout dictionary
	Editors and renderers

	Importing feeds
	Sample feeds list
	XML mapping model
	Fetching dictionaries
	Cleaning snapshots
	Enabling the importer
	Enabling logging
	Running the importer
	Browsing feeds

	Crawling feeds
	Fetching feeds to crawl
	Crawling feeds
	Tagging items
	Running the import
	Importing in a separate thread
	Browsing items
	Customizing how items are shown

	WireHose layout concepts
	The application helper
	The session helper
	WireHose user interface concepts
	The layout dictionary

	Customizing the user interface
	Making the main page
	Adding keyword searching
	Adding the search box
	Customizing the search prompt
	Customizing the search box on specific pages
	Removing the search box from a specific page

	Adding personalization
	Add this to my page
	Building TagDrillerPage
	Building SignupPage
	Adding the component
	Building the UI
	Writing the code

	Finishing the user interface
	Adding a login panel
	Customizing the main page
	Adding navigation

	Further exploration
	Component channels
	Qualifier fetchers
	Streaming resources
	Revision tracking
	Access control
	Tag templates
	Bookmarkable URLs
	Special components
	Caching
	Multiple affiliates
	Affiliate-based inheritance
	Automatic subentity creation
	Multiple affiliate best practices

